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Abstract. Perhaps one the newest and of the more interesting coopera-
tive approaches to evolutionary computation which has been more re-
cently explored is the area of mutualism.  In mutualistic methods, the
problem is subdivided into modular components where each component
evolves separately, but is evaluated in terms of the other components.
In this way the problem may be cooperatively solved.  In an attempt to
give this novel approach more adaptive ability, in this paper we explore
the effects of adding varying degrees of population diffusion via a mu-
tatable tagging scheme applied to individual chromosomes.

1. Introduction

Despite the tremendous scientific advancements of this century, and throughout his-
tory, computer science still remains inordinately inferior to nature in its ability to
solve complex problems.  Indeed, much advancement in the various fields of the
science has come from borrowing solving techniques from nature itself.  Surely there
can be no mistaking this in the area of Genetic Algorithms (GA), arguably pioneered
by John Holland (Goldberg, 1989; Holland, 1992) in 1975, as well as the more gen-
eral area of Evolutionary Computation (EC), born as early as the late 1950’s/early
1960’s by a men such as Bremermann, Friedberg, Box, and Friedman (Fogel, to ap-
pear).

Borrowing from the concepts of Darwinian evolution, these early pioneers realized
that the precepts of emergence and natural selection were well suited for many types
of hard problems faced by computer scientists.  They developed techniques for creat-
ing populations of individuals, consisting of potential solutions encoded in chromo-
some-like forms, and applying genetic operators (such as mutation and crossover) as
these population members interbreed and are selected based on fitness values deter-
mined using varying evaluation methods.

Nature continues to be a source of inspiration for the field of EC.  Concepts of co-
operation and competition have since been applied in many forms, as have other
forms of subpopulation and speciation techniques.  Moreover, using multiple popula-
tions as a means to accomplish both coevolutionary solving as well as solving simul-



taneously for multiple near optimum solutions has captivated the attention of many
EC researchers.

Further, recent coevolutionary advancements have included the concept of mutu-
alism (Potter, 1997).  Here problems are broken up such that a given subpopulation
consists of individuals representing a portion of a solution.  These subpopulations are
evolved entirely separately, with the exception of evaluation, during which represen-
tatives are used in order to produce fitness values via cooperation.

In this study, we explore combining techniques used in studies regarding multiple
subpopulation research, including mutualism.  This paper discusses the use of a mu-
tatable tagging system to allow individuals in a mutualistic model to move from sub-
population to subpopulation via a technique called diffusion (Spears, 1994).  We will
discuss this background research in more detail in section 2.  In section 3, we will
describe how these historic techniques were uniquely combined for our study.  The
results are described in section 4, and the conclusion is discussed in the final section.

2. Background

Using multiple subpopulations in a GA is a technique that has been harnessed for
many purposes by many researches in the field of EC.  Goldberg and Richardson’s
(1987) work showed how a simple GA can be used to find multiple optimum and sub-
optimum peaks during function optimization by using two techniques, restricted
mating and sharing.  Here individuals were only allowed to breed with other members
of the population that were genetically similar, implicitly creating different species
within the total ecology of a single GA.  Sharing was then employed to prevent
crowding of individuals on the tallest peaks by modifying fitness values of individuals
in the subpopulations dynamically.

William Spears continued this research (Spears, 1994), modifying it for simplicity
and performance by providing, more explicitly, the use of multiple subpopulations
within the greater population.  Further, individuals were restricted in mating to those
individuals which were likewise a member of the same subpopulation.  Membership
to a given subpopulation was identified by the use of tags, additional bits affixed to
the chromosome which specified to which species that individual belonged.  Moreo-
ver, fitness sharing was implemented by taking the fitness value as formed by the
evaluation process of a given individual, and dividing it by the total number of indi-
viduals which were also members of the same subpopulation.  Subpopulations would
thus grow and shrink dynamically from generation to generation depending on selec-
tion.  We expect larger peaks to have larger subpopulation sizes, and smaller peaks to
have their proportion, as the GA becomes more stable during convergence.

Although Spears performed his experiments in this study without mutation of the
tag bits, he briefly discusses the concept of diffusion, in which the tag bits can be
mutated at the same or a differing rate as the other bits in the chromosome.  This rate
is known as the rate of diffusion.  In this way, parents from one generation may yield
a mutated child, such that the offspring is a member of a different species.

In addition to multiple species being used in this way, it is also possible to use spe-
ciation as a means of accomplishing coevolution.  Although the vast majority of such



research has been primarily focussed in the area of competitive species (Schlierkamp-
Voosen et al., 1994; Cohoon et al., 1987; and Tanese, 1989), there have been some
significant studies of cooperative systems.  Indeed, Mitchell Potter and Kenneth De
Jong use this very idea in function optimization (Potter et al., 1994), yielding the
concept of mutualism.  In mutualism, a given problem is broken down into compo-
nents, where each is evolved mutually, but in isolation to the other components.
During evaluation of an individual from a given subpopulation, representatives are
selected from the other subpopulations in order to form a complete solution, and fit-
ness is assigned by using this cooperative structure.  Potter and De Jong refer to these
systems as cooperative coevolutionary genetic algorithms (CCGAs).

Although Potter investigates more dynamic methods of creating and eliminating
species for other types of problems (Potter, 1997), such as structural construction of
neural networks, what is of more significance to us is the work with function optimi-
zation, which has a more static nature in terms of component construction.  When
optimizing functions, Potter assigns each species to a given variable of a multi-
variable function.  The populations are homogeneous in the sense that they are all
represented in the same bit string structure, and the same genetic operators are applied
(albeit separately) to each population, though this need not be the case for all prob-
lems, as he clearly discusses (Potter, 1997).

Selecting a representative, or a collaborator, can be done in many ways, but most
easily is accomplished by selecting the member with the highest fitness value from
each of the collaborating subpopulations

1
.  So each generation, all the individuals in a

species under evaluation will be applied to the objective function one at a time, using
the most fit individuals in the previous generation from the other species to form a
complete solution.  In this way these collaborators cooperate with the subpopulation
currently being evaluated.  Each species is evaluated in turn in this manner in a full
ecosystem generation

2
.  A good comparison of a standard GA to the CCGA in pseudo-

code was provided by Potter (1994) and is shown below in figures 1 and 2.

gen = 0
Pop(gen) = randomly initialized population
evaluate fitness of each individual in Pop(gen)
while termination condition = false do begin

gen = gen + 1
select Pop(gen ) from Pop(gen - 1) based on fitness
apply genetic operators to Pop(gen)
evaluate fitness of each individual in Pop(gen)
end

Fig. 1.  The structure of a traditional GA

                                                       
1
 In the case of the generation 0, we randomly select collaborators.

2
 Potter (1997) defines generation “…to be a complete pass through the select, re-

combine, evaluate, and replace cycle of a single species…” and an ecosystem genera-
tion to be “…an evolutionary cycle through all species being coevolved.”



gen = 0
for each species s do begin

Pops(gen) = randomly initialized population
evaluate fitness of each individual in Pops(gen)
end

while termination condition = false do begin
gen = gen + 1
for each species s do begin

select Pops(gen ) from Pops(gen - 1) based on fitness
apply genetic operators to Pops(gen)
evaluate fitness of each individual in Pops(gen)
end

end

Fig. 2.  The structure of a Cooperative Coevolutionary GA

Notice that there will be more evaluations per ecosystem generation in the CCGA
than in a traditional GA generation.  In fact, the number of evaluations is n * popula-
tion size, where n is the number of species (or arguments of the function).  It is diffi-
cult to draw a comparison between generations in a traditional GA, and ecosystem
generations in a CCGA for this reason.  More appropriately, we look at the total num-
ber of evaluations performed.  It is clear, however, that for the same number of func-
tion evaluations, the GA will complete more generations than the CCGA will com-
plete ecosystem generations.

This novel approach gives us an idea how a problem can be statically sub-divided
and solved in a coevolutionary, mutualistic manner.  In the next section we will dis-
cuss how we were able to provide a bit more flexibility in allowing the CCGA to
"tune" subpopulation sizes to a particular problem landscape, as well as providing
possible future research possibilities with regards to more natural mechanisms for
species to arise and become extinct.

3. Tagging and Mutualism

The application of diffusion to the CCGA model represents a very natural marriage of
Potter’s mutualistic model and Spear’s tagging scheme.  However, despite the com-
plementary relationship of these techniques, there still remain several issues raised by
the technique, which must be addressed.

Indeed, these concepts, as we have already shown, are not substantively dissimilar,
as both models make use of the concept of multiple subpopulations, albeit with dif-
fering representations.  As with Spears tagging, our model, here called a diffusable
cooperative coevolutionary genetic algorithm (DCCGA), segregates individuals into
specific subpopulations by means of a binary tag in the chromosome.  These tags are



subject to mutation at a differing rate than the other bits (the rate of diffusion), al-
lowing parents of one generation to yield offspring that belong to a different species.

The DCCGA model, however, still subdivides the problem into cooperating popu-
lations, each representative of arguments in the function.  Like Potter’s model, col-
laborators are chosen as representatives for evaluation, and each subpopulation is
evolved mutually.

 The application of such a tagging scheme allows for the possibility of more spe-
cies than arguments for the function; though, since the number of possible distinct
species (So) is given as follows:

So = 2n,

where n is the number of bits in the tag.
With this observation, it becomes imperative that we draw a distinction between

niche and species.  In the DCCGA, a niche is an ecological space where individuals
from that space represent encoded values for a particular argument of a given func-
tion.  On the other hand, a species is a population where the individuals of that popu-
lation can interbreed, but cannot breed outside of that population.  In the case of the
DCCGA, there may be more than one species that fill a particular niche.  Indeed,
more often than not, there will be several occurrences of 2 species which representa-
tive of the same niche, i.e. two different tags represent the same parameter.

In our case, the solution is to construct a table to map each species tag to an appro-
priate niche.  Such a mapping necessitates that there be some degree of overlap.  The
table is constructed sequentially, by consecutively assigning each tag to a function
argument, overlapping when necessary.  For example, in the case of a function which
requires 5 variables, the smallest So which can be used is 8 (3 bits, 23 = 8).  As such,
the following table can be constructed:

Tag Function Argument
000 x1

001 x2

010 x3

011 x4

100 x5

101 x1

110 x2

111 x3

Tab. 1.  Table illustrating the mapping of species to niche for a 5 variable function

We can see from this table that, in three cases (x1, x2, and x3) there will be two differ-
ent species that contain individuals representing potential values for each variable.

The next issue is that of how a single collaborator can be chosen between the two
populations.  In our DCCGA, this is done by simply selecting the collaborator from
the subpopulation with the highest average fitness.  Such a resolution is by no means



the only solution to this issue, nor the most sophisticated, but should suffice for the
general case.

Another issue that arises from the application of diffusion to Potter’s model is that
of the potential for extinction.  Since the tags are subject to mutation, the population
sizes are dynamic.  While this is, in part the intended goal of this addition, it also
serves to bring about a condition from which no evaluation is possible: extinction of
all the species covering a specific niche.  To resolve this, a certain degree of preser-
vation is necessary.  Here we choose to preserve the best 10% of each subpopulation.
This alleviates this issue by establishing an implicit minimum population size for each
species, although presents the possibility of a loss of diversity in species which have a
depleted population size due to diffusion.

There are several advantages to this technique.  First of all, subpopulation sizes are
dynamic, consequently the search may favor one argument over another.  Also, diffu-
sion brings the gene pool of a population possible diversity benefits, in particular for
asymmetric functions.  In addition, the overall process is more natural, allowing for
the possibility of an individual being born genetically dissimilar to its parents such
that it is no longer of the same species.  This indicates the possibility of future re-
search using similar methods to provide more natural mechanisms of species creation
and extinction in the dynamic CCGA approaches discussed by Potter in his disserta-
tion (Potter, 1997).  Some ideas to this end are discussed in the conclusion of this
paper.

4. Experimental Results

In order to provide a thorough study, each of 12 experimental groups were used to
optimize a total of 5 different functions.  The groups were constructed in order to
compare results of a standard GA, both with and without tagging (SSGA), CCGA,
and DCCGA techniques.  To get a clearer picture regarding the effect of diffusion, the
diffusion rate is varied.  The groups are shown below in table 2, on the following
page.

With the obvious exception of those parameters listed in table 2, the parameters
chosen remained consistent for all runs of all groups.  These are as follows:

Representation: binary (16 bits per function variable)
Selection: fitness proportionate with linear scaling
Mutation: bit-flip, pm=1/L (where L is the length of the chromosome)
Crossover: two-point, pc=0.60
Population: 100 individuals per population
Termination: 100,000 function evaluations

The functions chosen to optimize, as well as the above parameters, were chosen
primarily for similarity of Potter’s study.  Indeed the functions optimized in this
study, listed in the table 3 (also found on the following page), represent the very same
functions that Potter and De Jong used in their 1994 study of CCGAs.



Experimental
Group

Description of Group Elite
Preserved

Rate of
diffusion

GAv1 Standard elite genetic algorithm 1 0.00
GAv2 Elite genetic algorithm 10 0.00
CCGAv1 Potter’s cooperative coevolu-

tionary genetic algorithm
1 0.00

CCGAv2 Potter’s cooperative coevolu-
tionary genetic algorithm

10 0.00

DCCGA0 Diffusable genetic algorithm 10 0.00
DCCGA2 Diffusable genetic algorithm 10 0.02
DCCGA5 Diffusable genetic algorithm 10 0.05
DCCGA10 Diffusable genetic algorithm 10 0.10
SSGA0 Simple subpopulation GA

(Spears tagging)
10 0.00

SSGA2 Simple subpopulation GA
(Spears tagging)

10 0.02

SSGA5 Simple subpopulation GA
(Spears tagging)

10 0.05

SSGA10 Simple subpopulation GA
(Spears tagging)

10 0.10

Tab. 2.  Table describing the groups used in the experiment.

Definition Range &
Values

ƒ1(x→)= -c1 ⋅ exp 






-c2

2
1
n ∑
i=1

n
xi

2  - exp






1

n ∑
i=1

n
cos(c3xi)  + c1 + e

-30.0..30.0
n = 30
c1 = 20
c2 = 0.2
c3 = 2π

ƒ2(x→)= 1 + ∑
i=1

n
xi

2

4000 - ∏
i=1

n

cos



xi

i

-600.0..600.0
n = 10

ƒ3(x→)= 418.9829n + ∑
i=1

n

 xi  ⋅ sin( |xi |)
-500.0..500.0
n = 10

ƒ4(x→)= 3.0n + ∑
i=1

n
 xi

2 - 3.0 ⋅ cos(2πxi)
-5.12..5.12
n = 20

ƒ5(x→)= 100(x1
2 - x2

2)2 + (1 -  x1
2)2

-2.048..2.048

Tab. 3.  Table describing the functions that were optimized in the experiment.



In all cases the true global minimum of the function is zero.  In all but two cases,
this minimum is found at the point x→ = (0,0, ⋅⋅⋅).  For the function ƒ3, the minimum
value of zero can be found at the point x→ = (420.9687, 420.9687, ⋅⋅⋅); however, in the
case of ƒ5, the zero value is found at point x→ = (1,1).

The results for solution value are shown in table 4 below.  Each group was run for
each function 20 times.  The results reported below indicate the average of the “best-
ever”  values found in the 100,000 evaluations of each trial.

ƒ1 ƒ2 ƒ3 ƒ4 ƒ5

GAv1 1.59E+01 8.89E+00 2.91E+01 4.16E+02 3.63E-03
GAv2 1.24E+01 8.39E-02 1.15E+01 4.23E+01 5.38E-05
CCGAv1 1.7E+00 6.05E-01 2.91E-01 3.86E-01 1.58E-04
CCGAv2 3.89E-01 2.18E-01 3.89E+00 4.47E-01 2.79E-04
DCCGA0 9.15E-01 5.21E-01 4.93E+00 3.38E-01 6.08E-04
DCCGA2 4.86E-01 5.27E-01 6.75E+00 3.74E-01 3.35E-04
DCCGA5 4.71E-01 6.11E-01 3.70E+00 2.35E-01 1.86E-04
DCCGA10 5.19E-01 6.43E-01 5.79E+00 1.41E-01 3.40E-04
SSGA0 1.99E+01 7.42E+00 3.84E+01 8.67E+02 2.13E-02
SSGA2 2.03E+01 1.05E+01 1.05E+02 1.83E+03 3.31E-02
SSGA5 2.03E+01 1.05E+01 1.25E+02 1.99E+03 3.84E-02
SSGA10 2.02E+01 2.76E+00 1.33E+02 2.08E+03 1.21E-02

Tab. 4.  Table displaying the solution quality results for all 5 functions and 12 experimental
groups.  These values represent averages across 20 trials.

ƒ1 ƒ2 ƒ3 ƒ4 ƒ5

GAv1 2.67E+00 1.54E+01 3.39E+01 5.58E+02 1.32E-02
GAv2 4.92E+00 5.09E-02 1.48E+01 9.25E+01 1.31E-04
CCGAv1 6.45E-01 2.18E-01 3.68E-01 5.90E-01 2.26E-04
CCGAv2 5.16E-01 7.90E-02 2.13E+00 1.26E+00 2.83E-04
DCCGA0 3.74E-01 2.22E-01 3.18E+00 5.90E-01 7.13E-04
DCCGA2 4.70E-01 2.05E-01 3.14E+00 7.49E-01 3.23E-04
DCCGA5 6.18E-01 1.97E-01 2.89E+00 2.43E-01 2.83E-04
DCCGA10 1.21E+00 1.74E-01 3.52E+00 1.34E-01 3.11E-04
SSGA0 1.98E-01 1.76E+01 2.47E+01 1.27E+02 4.15E-02
SSGA2 1.70E-01 2.11E+01 9.75E+00 1.30E+02 3.99E-02
SSGA5 2.20E-01 2.11E+01 1.02E+01 2.16E+02 6.05E-02
SSGA10 1.72E-01 3.64E+00 3.69E+01 6.21E+02 2.39E-02

Tab. 5.  Table displaying the standard deviation of solution results across 20 trials for all 5
functions and 12 experimental groups.



5. Conclusion

Clearly, from the table above, it can be seen that the DCCGA technique was not
wholly beneficial in all cases.  Indeed, although the DCCGA performs quite well in
most of these cases, finding the solution to each function with higher quality than the
GA groups and the CCGAv1 group, still it remains obvious that the diffusive tech-
niques were not clearly demonstrated as the reason for increased performance.  For
the most part, the technique that solved for the higher solution quality in these cases
was the CCGAv2 group, the non-diffusive cooperative coevolutionary approach with
the higher degree (10%) of elitist preservation imposed.  This would seem to suggest
that the primary benefit of the algorithm’s method was due to its preservation policy,
for these functions.
   However, having stated that, there is certainly evidence that the diffusion technique
was beneficial, albeit not the primary contributor to the increased performance.  First,
functions ƒ4 and ƒ5 performed better than the CCGA with 10% elite preservation ap-
plied (CCGAv2), although ƒ5 still did not perform as well as CCGAv1 or GAv2.
Secondly, the table above clearly indicates a variation of solution quality depending
on the amount of diffusion applied.  Moreover, some degree of consistency can be
seen in terms of the optimal diffusion rate.  In three of the five cases the best diffusion
rate was 5%.  In the case of ƒ2, however, it is clear from the above results that the
higher degree of elitism was most responsible for the greater solution quality.  Fur-
ther, in four of the five cases the standard deviation was lowest within the DCCGA
groups at a rate of diffusion of 5%.  In the abhorrent case, function ƒ2, the best rate
was curiously 10%, though the better solution quality occurred with no diffusion
(0%).  This would seem to suggest that a diffusion rate of 5% would be a good start-
ing point for general problems, but that it may be necessary to tune it for a given
function for achieving better results.
   There are several possible reasons for the mediocre performance of the DCCGA.
First, there exists no real pressure for the model to tune subpopulation size.  Future
studies of this technique should consider providing a more competitive system for
species vying for the same niche.  This can be done in many ways, but one such way
is to make the diffusion rate increase for a given subpopulation that was not selected
to allow the contribution of a collaborator.
   Alternatively, diffusion could be presenting added diversity benefits at the start of a
run, but impose more disruptive effects as the algorithm converges.  A possible solu-
tion to this problem might be to reduce the rate of diffusion as the system converges
and stabilizes.
   Another reason for the poorer than expected performance of this study’s model, is
the nature of the functions chosen.  These functions, chosen for consistency with
Potter’s studies (Potter et al., 1994) are, for the most part, symmetric along all of their
axes.  Aside from some ancillary diversity benefit that diffusion in a coevolutionary
system might bring to such a function, tuning of the subpopulation sizes may be
wholly unnecessary.  Future research will consider more asymmetric functions.
   Also, there is room for more serious applications of the DCCGA technique in other
systems.  For instance, in Mitchell Potter’s dissertation (Potter, 1997), he explores
using a CCGA to build a neural network by constructing the hidden layers, and tuning
the initial network.  In this model the hidden layers are represented by individual



species which are dynamic in the sense that species are created and become extinct
(according to certain rules) as the model finds a solution.  A variation of our tech-
nique could be used to allow diffusion to be the driving force for the creation and
extinction of species. Providing a mechanism to restrict mating of an individual to a
group of tags within a specified range, and evaluating by finding components based
on discrete groupings of the tags could accomplish this.
   The diffusable cooperative coevolutionary model offers many interesting future
possibilities for study.  Moreover, this study shows that there are more benefits to the
DCCGA which remain largely unexplored.  We intend to provide further examina-
tions of these issues in the future.
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