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Abstract. Cooperative coevolutionary algorithms (CCEAs) have been applied to
many optimization problems with varied success. Recent empirical studies have
shown that choices surrounding methods of collaboration may have a strong im-
pact on the success of the algorithm. Moreover, certain properties of the prob-
lem landscape, such as variable interaction, greatly influence how these choices
should be made. A more general view of variable interaction is one that considers
epistatic linkages which span population boundaries. Such linkages can be caused
by the decomposition of the actual problem, as well as by CCEA representation
decisions regarding population structure. We posit that it is the way in which rep-
resented problem components interact, and not necessarily the existence of cross-
population epistatic linkages that impacts these decisions. In order to explore this
issue, we identify two different kinds of representational bias with respect to the
population structure of the algorithm, decompositional bias and linkage bias. We
provide analysis and constructive examples which help illustrate that even when
the algorithm’s representation is poorly suited for the problem, the choice of how
best to select collaborators can be unaffected.

1 Introduction

Coevolutionary Algorithms (CEAs) are interesting extensions to traditional Evolution-
ary Algorithms (EAs). While fitness in an EA is determined objectively, fitness in a
CEA is determined subjectively based on how an individual interacts with other individ-
uals. In cooperative coevolution, individuals that participate in successful interactions
(collaborations) are rewarded while unsuccessful collaborations are punished.

In this paper, we focus on the particular class of cooperative coevolutionary al-
gorithms (CCEAs) defined by [1, 2]. A standard approach to applying CCEAs to an
optimization problem starts by trying to identify some reasonable static decomposi-
tion of the problem representation into components represented by each population. So,
for example, if given a function of m variables to optimize, one might choose to put
each variable in a separate CCEA population. Once a decomposition is established, the
fitness of components in one population is estimated by choosing one or more collabo-
rators from the other populations.

There have been several attempts to understand how collaborators are best cho-
sen in this paradigm. Early work suggested that these choices were tied to the amount
of epistatic interaction among the function variables [1, 3]. In a CCEA that uses an N-
variable decomposition for such fitness landscapes, this leads to the notion of



cross-population epistasis, and to the simple intuition that increasing amounts of cross-
population epistasis will require more complex collaboration mechanisms. Unfortu-
nately, the issue is more complicated than this. For example, the simplest collabora-
tion method seems to work best when applying a CCEA to a non-linearly separable,
quadratic problem despite the existence of cross-population epistasis [4].

This paper extends and clarifies these issues by focusing on how optimization prob-
lems are represented in a CCEA. We identify two kinds of representational bias, decom-
positional bias and linkage bias, and show how these biases affect choices of collabora-
tion method. The paper is laid out as follows. In the next section, we will briefly outline
some background regarding existing analyses of coevolutionary algorithms, the cooper-
ative coevolutionary architecture on which we will be focusing, and some of the choices
surrounding collaboration in this algorithm. The third section discusses what we believe
to be the important characteristics of problems, namely decomposability and epistasis.
The fourth and fifth sections take the two kinds of representational bias in turn, first
discussing the implications of decompositional bias with respect to collaboration, then
those of linkage bias. The final section will conclude by discussing our improved un-
derstanding how problem characteristics affect choices of collaboration methodology.

2 Cooperative Coevolution

2.1 Existing Analysis of Coevolutionary Algorithms

Much of the analysis of coevolutionary algorithms has focused on their complicated
dynamics. For example, considerable effort has been spent trying to understand how
one can measure progress in a system where individual fitnesses are subjective in or-
der to help identify some of the pathological behaviors exhibited by these algorithms
[5–7]. Additionally, some basic theoretical work uses ideas from simple genetic algo-
rithm theory provided by [8], and applies them to competitive coevolution [9]. That
work explores the mechanics of a simple competitive coevolutionary algorithm from an
evolutionary game theoretic viewpoint. [10] extended this model to analyze cooperative
coevolution for the purposes of investigating their potential as optimizers.

One of the issues of considerable practical significance for coevolutionary algo-
rithms is how to assess the fitness of an individual in one population (species) when
that fitness depends in part on the individuals in other populations (species). The the-
oretical models typically assume “full mixing” in the sense that an individual’s fitness
is determined by a complete set of “interactions” with all other species. In the simple
case that each of the coevolving p populations contains i individuals, the number of
“interactions” per fitness evaluation is ip−1.

As a consequence, there is strong practical motivation to estimate fitness by se-
lecting only a small subset of the possible interactions, particularly when p� 2. This
process is usually accomplished by selecting a small number “partners” [3] or “collab-
orators” [1] from the other species whose interactions are the basis of fitness estimates.
Immediate questions arise as to: 1) how many partners, 2) how to select the partners,
and, in the case of multiple interactions, 3) how to combine the results of multiple inter-
actions into a single fitness estimate. The answers to these questions are far from simple



and depend on a number of factors including 1) whether the coevolutionary model is
competitive or cooperative, and 2) the degree and type of cross-population epistasis
present [1, 11, 2–4, 12].

2.2 Collaboration in CCEAs

Our focus is on understanding these issues for cooperative coevolutionary models, in
particular for the CCEA architecture developed in [1, 2]. In this model there is a single
global fitness function for the entire system, but the search space has been decomposed
into a number of independent subspaces, each of which is explored in parallel by inde-
pendent EA populations. In this case, in order to evaluate the fitness of an individual in
one population, one or more collaborators must be selected from the other populations
in order to assemble a complete object for a global evaluation.

A variety of studies including [1, 3, 4] suggest that, if the degree of cross-population
epistasis is not too strong, then selecting the current best individual from each of the
other populations and performing a single global fitness evaluation is a surprisingly ro-
bust collaboration mechanism. When there is a strong degree of epistasis, a more com-
plex strategy involving more than one collaborator from each of the other populations
and a less greedy selection method for those collaborators can improve performance.

Finally, if multiple function evaluations are involved for each subcomponent, how
can one combine these results to obtain a single fitness value? Here the literature is fairly
consistent in recommending assigning the maximum value obtained as the fitness.

2.3 Representation in CCEAs

However, for the practitioner, there are still a number of questions to be answered in-
cluding how to decompose a complex problem in a way that leads to an effective CCEA-
based solution. This is a familiar question for standard EAs, e.g. deciding how best
to represent problems (such as Traveling Salesperson problems) to achieve good EA-
based solutions. For CCEAs, representations must additionally involve decompositions
into separately evolving subcomponents.

The difficulty for the CCEA practitioner is that there is seldom sufficient a priori
information to select an “optimal” representation or even one with sufficient knowledge
to make informed choices about the appropriate collaboration mechanism to use. How-
ever, it is clear that any choice of representation introduces a bias in the system that can
potentially have strong effects on a particular collaboration strategy.

Intuitively, CCEA representation biases are a result of the granularity of the decom-
position (how many subcomponents) and the resulting epistatic interactions among the
subcomponents. The focus of this paper will be on understanding these biases and their
effects on collaboration mechanisms.

3 Research Methodology

In order to better control for the representational properties that we feel are important
to choices of CCEA collaboration mechanisms, this paper focuses on pseudo-boolean



functions, that is the objective value is assessed by mapping binary strings of length
n to real values, F : {0,1}n → ℜ. The two representational properties of interest are
decomposability and epistasis.

3.1 Decomposability

For our purposes, a function is considered decomposable if it can be decomposed into
a sum of some number of smaller independent functions. These functions do not neces-
sarily have to be identical. More formally, a function F is decomposable if there exist a
set of independent functions, { f1, f2, . . . , fm} such that F (x) =

∑m
i=1 fi(xi). Some types

of problems are rendered more tractable for optimization because of this property since
optimization can be done as m independent optimizations [13].

For pseudo-boolean functions, each xi refer to partitions of the main string, or build-
ing blocks of the problem. Of particular interest are m-decomposable functions, i.e.,
those for which an m block decomposition exists, but no finer grained partition exists.

An example of a bit-wise decomposable problem (i.e., m = string length) is the
classic OnesMax problem in which fitness is the sum of all the 1 bits in the string. A fa-
miliar example of a problem that is not decomposable (i.e., m = 1) is the LeadingOnes
problem. Both of these problems are defined formally in the following sections.

Ideally, for such problems, one would like to map each decomposable unit into
a CCEA population. In general, however, the practitioner and the CCEA don’t have
explicit decomposability information. As a consequence, a CCEA can be mismatched
in terms of the number of populations and what gets mapped into each population. We
refer to this as the decompositional bias of a CCEA.

3.2 Epistasis

This notion of decomposability is intimately tied to the ideas of epistasis. For pseudo-
boolean functions we define epistasis to mean non-linear interactions between bit posi-
tions in the problem [14]. So, for example, a highly epistatic pseudo-boolean function
like LeadingOnes is 1-decomposable while the non-epistatic OnesMax problem is
fully decomposable.

Of interest here is the kind of epistasis that a decomposition exhibits (e.g., [12]).
Epistatic interactions can be positive in the sense that the contribution of a piece of the
representation due to its non-linear interaction with other pieces have the same kind of
impact on fitness as the contribution of the piece itself; however, the magnitude of that
impact depends on the value of the other pieces involved in the interaction. Similarly,
epistatic interactions can be negative in the sense that the impact of the individual pieces
involved have the opposite effect on fitness as the contribution of their non-linear com-
binations, but again the magnitude of this opposing contribution depends on the pieces
involved. In addition, one can have epistatic interactions in which neither the sign nor
the magnitude of the effect can be predicted from the individual components. As we
will see, the particular form of epistasis has an important effect on collaboration mech-
anisms.



3.3 Experimental Framework

In the following sections we will construct several problems that exhibit these properties
and we analyze them both formally and empirically. For the empirical studies we used
a CCEA with the following properties. A steady state GA was used for evolving each
of the populations. Each steady state GA uses a ranked-based selection method, such
that a single offspring replaces the worst individual each generation Bit-flip mutation
was applied at a rate of 1/r, where r is the number of bits of individuals in a given
population. Parameterized uniform crossover was applied 100% of the time to produce
a single offspring in such a way that there was a 0.2 probability of swapping any given
bit. As part of the reported experiments, we varied the number of populations, p, but in
all cases the number of individuals in each population was 10.

During preliminary sensitivity experiments, various algorithm parameter values were
used. These included generational versus steady state models, proportional versus ranked-
based selection methods, different population sizes, different variational operators (and
rates). Though not reported in this paper, the results were consistent with our reported
findings. Our choices for the final algorithm were based on performance results.

4 The Effects of Decompositional Bias on Collaboration

Obviously, different problems have different degrees of decomposability that may or
may not be reflected in the particular CCEA representation chosen. Since decompos-
ability information is not generally available for difficult optimization problems, our
focus here is on the case where there is some kind of mismatch between the CCEA rep-
resentation and a problem’s “natural” decomposition. The question here is not whether
such mismatches make the problem harder to solve. This will clearly happen for some
problems [1, 3, 12, 4]. Instead, the question is whether adopting more complex collabo-
ration methods can alleviate such mismatches.

4.1 Controlling Decompositional Bias Experimentally

In order to answer this question, we need to have problems in which we can explicitly
control their inherent decomposability. For pseudo-boolean functions this is not difficult
to do. One simply defines a function in terms of the sum of m independent subfunctions
which are themselves not decomposable. A simple example is obtained by choosing a
non-decomposable function of k bits and concatenating m of these k-bit blocks to form
a km-bit problem the value of which is just the sum of the individual functional blocks.

More formally, let F : {0,1}n →ℜ be some objective function over a binary string
of length n = mk and f : {0,1}k be some non-decomposable function over a binary
string of length k. Then, given x ∈ {0,1}n,

F (x) =

m−1∑

i=0

f (mi)

where mi represents the ith block of k bits in x.



From a practitioner’s point of view, barring any problem specific knowledge, the
simplest way to represent pseudo-boolean functions is to break up bit strings of length n
into p blocks and assign each block to a different population. Hence, a decompositional
mismatch of the representation may be due to over-decomposition (p > m) or under-
decomposition (p < m). If there are more populations than there are decomposition
blocks, there is likely to be strong interaction between populations in the system with
respect to the problem, i.e., cross-population epistasis. If p < m, the advantage of the
parallelism of coevolutionary search is sacrificed.

4.2 Effects of Collaboration Methods

We begin to answer the question of whether problems introduced by decompositional
bias can be alleviated by more complex collaboration methods by observing that, if
there is no cross-population epistasis, a simple selection method for collaboration is
sufficient. If the two populations represent independent pieces of the problem, then op-
timizing one population independently of the other will result in the complete optimiza-
tion of the problem. As long as the collaborators chosen for each population member
are the same, it doesn’t matter how we chose the collaborator. However, it does mat-
ter how many collaborators we choose, since picking more than one will incur more
unnecessary computational cost in the way of objective function evaluations. There-
fore, in the absence of cross-population epistasis, selecting the single best individual 1

from the other populations for collaboration is sufficient. In fact, one could pick this
individual randomly, as long as it was the same individual for each member of the pop-
ulation during a given generation. The point isn’t that any partnering scheme will result
in a better collaboration than another, but that since each population can essentially be
optimized independently, we only need a consistent sample from which to establish a
collaboration.

So why would a more complicated collaboration selection method be needed? Re-
call that how one chooses collaborators is essentially a choice about how one samples
the potential interactions with the other population. There has to be a reason to be-
lieve that more than one sample is needed, or that sampling with a particular bias (say
choosing the best) will result in a poor characterization of the relationship between the
populations. Either way, some interaction between the populations is certainly needed
to justify this. More than simply having such epistasis is at issue, however.

Consider the LeadingOnes problem, f (x) =
∑k

i=1

∏i
j=1 x j. This problem is cer-

tainly not decomposable. Further, if we aggregate m of them, we can study the effects
of running a CCEA when the number of populations p is >= m.

In order to study the effects of collaboration on such situations, we constructed the
following experiment. Using the CCEA described in the Methodology section, we ex-
perimented with a concatenated LeadingOnes problem. In this particular case there
were 128 bits in the total bit string of the problem, subdivided evenly into m = 2 blocks.
A total of 6 collaboration selection methods were used. The number of collaborators
chosen for a given evaluation was varied (1,2,&3) and two selection biases were used:
s-best and s-random (without replacement). We varied the number of populations, p,

1 ”Best” here means the most fit individual(s) in other population(s) from previous evaluation.



but in all cases the number of individuals in each population was 10. The results for
p = 2 through p = 16 in Table 1 show the average number of evaluations it took the
algorithms to reach the optimum (50 trials each). Unless otherwise stated, confidence
levels for all tests are 95%.

p = 2 # Collaborators p = 4 # Collaborators
1 2 3 1 2 3

s-best 8016.7 16015.4 24654.2 s-best 8801.1 17602.1 26198.9
s-rand 8989.8 17247.7 25191.8 s-rand 10155.5 18757.9 28372.5

p = 8 # Collaborators p = 16 # Collaborators
1 2 3 1 2 3

s-best 9821.52 19825.08 29018.32 s-best 11247.20 22350.32 33468.88
s-rand 12734.86 22134.34 32052.24 s-rand 19233.78 30089.90 41995.38

Table 1. Steady state CCEA results on the LeadingOnes problem. Each value represents the
mean number of evaluations needed to reach the optimum out of 50 trials. From the top left
conrner, proceding clockwise, the tables represent data for decompositional biases created using
two, four, eight and sixteen populations.

The Tukey-Means test indicates that in all cases choosing one collaborator is clearly
better. This might at first be puzzling since there is clearly cross-population epistasis
present when p > 2. However, note that a mutation which turns some bit to 1 in an
individual in the first population will always result either a neutral or positive change in
fitness, regardless of the contents of the other population. The reverse is true, as well.
In addition, this decomposition is also asymmetric for p = 4 in that the second and
fourth populations will remain relatively unimportant to the first and third populations
for some time during the evolution, since each LeadingOnes subproblem is solved
left-to-right.

One observation that can be made is that by changing the number of populations,
the mutation rate is effectively being increased (recall that the mutation is 1/r, where r
is the number of bits per individual in each population). Such issues may be relevant,
consequently we ran all population oriented experiments in the paper (including the
preceding one) using a constant 1/64 mutation rate. The results (not reported) remain
consistent with those reported here.

We can make the problem slightly more interesting by making the right-hand side of
the bit string play a more important role. We will do this by scaling the LeadingOnes
part by k and subtractingOnesMax from the total, i.e., f (x) = k

∑k
i=1

∏i
j=1 x j−

∑k
i=1 xi.

Now not only will the right side matter, but there is some tension between individual bit
contributions to fitness and those of their non-linear interactions. Moreover, this tension
is ”one directional” in a sense. Take the string: ”110000 . . .” as an example. Flipping
the fourth bit to a one will decrease the fitness slightly if the third bit remains 0, while
flipping both the third and fourth bits will increase the fitness. However, the same is
not true on the other side. Flipping the third bit while the fourth bit remains 0 will
also increase fitness. So some of the interactions have this property of sign-dependent
epistasis, while others will not. In addition, the linear effects of the bits are very muted
compared to the non-linear effects due to the scaling issue.



Using the same experimental setup as before, we studied the effects of collaboration
on LeadingOnes-OnesMax. The results for p = 2 through p = 16 in Table 2 show
the average number of evaluations it took the algorithms to reach the optimum (50 trials
each).

p = 2 # Collaborators p = 4 # Collaborators
1 2 3 1 2 3

s-best 15592.9 30846.8 48259.6 s-best 15549.4 30974.6 45445.7
s-random 16000.7 31320.6 46406.9 s-random 16381.6 30319.4 44736.0

p = 8 # Collaborators p = 16 # Collaborators
1 2 3 1 2 3

s-best 14014.40 28969.24 44172.40 s-best 14247.10 27911.04 41735.98
s-random 17343.58 28795.78 45252.94 s-random 21653.86 33975.28 47792.74

Table 2. Steady state CCEA results on the LeadingOnes-OnesMax problem. Each value
represents the mean number of evaluations needed to reach the optimum out of 50 trials. From
the top left conrner, proceding clockwise, the tables represent data for decompositional biases
created using two, four, eight and sixteen populations.

In all cases there was no statistical reason to choose another collaboration method
other than the single best individual from the other populations. Not only does this
increased decompositional bias not alter the collaboration methodology, it appears as
though this problem becomes easier for the CCEA to solve, not harder. This turns out
to be statistically significant only for the p = 8 and p = 16 cases (not shown) where
there is one or two ”best” collaborators chosen.

So far, these experiments confirm what we see in practice, namely that the simple
collaboration method involving just the best individuals from each population is quite
robust even when there is cross-population epistasis. However, what is still not clear
is when it fails. To understand that better, we focus on the the various forms of cross-
population epistasis.

5 The Effects of Linkage Bias on Collaboration

The decompositional bias of the previous section focused on potential mismatches
between a problem’s “natural” decomposition into m components and the number of
CCEA populations p used. Even if p = m, there is still the question as to whether the
CCEA breaks up the string so that each “natural” block is assigned its own population.
If not, breaking up tightly linked bits can result in significant cross-population epistasis.
In general, the degree to which linked bits in a block are assigned to the same population
for the purposes of representation can be thought of as linkage bias.

5.1 Controlling Linkage Bias Experimentally

Again it isn’t hard to construct a way of controlling this bias. We define a mask over
the entire bit string which specifies to which population a given bit belongs, M ∈
{1,2, . . . , p}n. Note that in the case of these mask definitions, the superscript suggests



repetition, and not an exponent. For problems like those in the previous section involv-
ing a series of m concatenated non-decomposable r-bit blocks, a mask which corre-
sponds to the most biased linkage (i.e. is more closely aligned with the real problem)
is Ms = 1r2r . . . pr. Coming up with a mask which is highly pathological is very prob-
lem dependent, but a mask which will turn out to be commonly quite bad is Mh =
(123 . . . p)r. Here every bit in a block is distributed to every population, resulting in the
likelihood of a high degree of cross-population epistasis.

As noted earlier, any increase in the amount of cross-population epistasis is likely to
make a problem more difficult to solve using a CCEA. The question at hand is whether
adopting a more complex collaboration method can alleviate these difficulties. By ap-
plying different types of masks, which distribute different pieces of the blocks of the
problem to different degrees, we can explore the affect that varying degrees of linkage
bias have on collaboration methods.

5.2 Effects of Collaboration Methods

We begin by considering again the LeadingOnes-OnesMax problem, assuming
m = p = 2. Using the Ms = 11 . . .1 22 . . .2 mask presents us the same problem we’ve
already discussed, where there is no cross-population epistasis, while the mask Mh =
1212 . . .12 2121 . . .21 creates a situation with very strong cross-population epistasis.
Using the same experimental setup as before, we studied the effects that these two
masks had on the choice of collaboration methods. The results are presented in Table 3.

Ms # Collaborators Mh # Collaborators
1 2 3 1 2 3

s-best 15592.9 30846.8 48259.6 s-best 15305.4 28939.1 45756.5
s-random 16000.7 31320.6 46406.9 s-random 17862.5 32802.2 47439.4

Table 3. Steady state CCEA results on the LeadingOnes-OnesMax problem. Each value
represents the mean number of evaluations needed to reach the optimum out of 50 trials. The left
table represents a linkage bias which uses the Ms mask, while the right uses the Mh mask.

Differences between the means for s-best and s-random groups for Mh are signifi-
cant for one and two collaborators, but not for three. There are no statistically significant
differences between these groups (for the same number of collaborators) for the simpler
linkage bias.

Once again simply distributing the epistatic linkages across the population bound-
aries is insufficient to require that a more complicated collaboration method be used.
This may seem surprising at first, but note that, for this particular problem, introduc-
ing such masks does not change the type of cross-population epistasis, only its degree.
Moreover, although not germane to our question, it is interesting to note that in this
particular case it seems that increasing the mixing seems to improve performance ver-
sus the Ms mask (this is significant for all but the 3-random case). In the case of our
generational CCEA experiments, this was true to statistical significance for all groups.

What we have failed to construct so far is a case of the most difficult form of
cross-population epistasis: namely, when neither the sign nor the magnitude of the



interaction can be reliably predicted. There is a simple change to the current prob-
lem that will result in cross-population epistasis of this type, namely by changing
the LeadingOnes component to count only paired ones. More formally, we defined a

LeadingPairedOnes-OnesMaxproblem given by f (x) = 2k
∑k

i=1

∏ i
2−1
j=1 (x jx j+1)−∑k

i=1 xi. Interestingly, this problem is so much more difficult that the optimum was
frequently never found. As a consequence Table 4 represents the mean fitness values
obtained after a constant 100,000 evaluations (here higher is better).

Ms # Collaborators Mh # Collaborators
1 2 3 1 2 3

s-best 3328.9 2086.5 1590.1 s-best 647.6 705.6 761.0
s-random 3366.7 2152.0 1784.1 s-random 1247.3 1383.4 1469.1

Table 4. Steady state CCEA results of the LeadingPairedOnes-OnesMax problem. Each
value represents the mean value obtained after 100,000 function evaluations out of 50 trials. The
left table represents a linkage bias which uses the Ms mask, while the right uses the Mh mask.

Now we see exactly the reverse situation. Although it is clearly better to select a
single collaborator when there are no cross-population epistatic linkages of this type,
as soon as those linkages are spread across populations a more complex collaboration
mechanism is required. In the latter case, increasing the number of collaborators does
in fact result in statistically improved performance, as does picking the individual ran-
domly rather than greedily. However, in the Ms case, with the exception of the three
collaborator groups, there is no statistical reason to pick randomly over picking the
best.

6 Conclusions

Choosing an effective representation of a problem is a critical design decision for any
EA-based problem solving. In the case of CCEAs, representation decisions involve ad-
ditional choices as to how to decompose a problem effectively. Without sufficient a
priori knowledge about a particular problem (the usual case), particular representations
can introduce biases related to the degree to which they match the underlying problem
characteristics. This in turn can affect the choice of collaboration mechanism to be used.

Using several well understood pseudo-boolean functions, we explored the effects of
two kinds of representational bias (decomposition bias and linkage bias) on collabora-
tion mechanism choices. We were able to show, somewhat surprisingly, that decompo-
sitional bias does not appear to dramatically affect the choice of collaboration mech-
anisms. For the practitioner, this means that the standard collaboration mechanism of
choosing the single best individual from each of the other subpopulations is reasonably
robust across decompositional biases.

Equally surprising was the fact that this same collaboration mechanism can be ro-
bust across different linkages biases as well, but not always. To understand this better,
the cross-population epistatic interactions resulting from these linkage biases were stud-
ied in more detail. In some cases these interaction are positively or negatively correlated
with fitness, in the sense that, though the magnitude of the fitness change depends on



the relationship between the linear and non-linear pieces of the problem, the sign does
not. The standard collaboration mechanism worked fine for these cases.

However, in the case where both the sign and the magnitude of the fitness contribu-
tion are uncorrelated, the standard collaboration mechanism breaks down and a more
complex mechanism is required. Intuitively, in such situations additional samples are
required to obtain reasonable estimates of fitness.

Clearly, the results presented here are preliminary in nature, and a more thorough
examination of these issues is needed. However, we believe these results already provide
useful guidance to the CCEA practitioner. An interesting open question for EA design
in general is whether this notion of different types of epistasis will also help clarify the
effects of gene linkages within a genome.
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