
Exploring the Explorative Advantage of the
Cooperative Coevolutionary (1+1) EA

Thomas Jansen?1 and R. Paul Wiegand2

1 FB 4, LS2, Univ. Dortmund, 44221 Dortmund, Germany
Thomas.Jansen@udo.edu

2 Krasnow Institute, George Mason University, Fairfax, VA 22030
paul@tesseract.org

Abstract. Using a well-known cooperative coevolutionary function op-
timization framework, a very simple cooperative coevolutionary (1+1)
EA is defined. This algorithm is investigated in the context of expected
optimization time. The focus is on the impact the cooperative coevolu-
tionary approach has and on the possible advantage it may have over
more traditional evolutionary approaches. Therefore, a systematic com-
parison between the expected optimization times of this coevolutionary
algorithm and the ordinary (1+1) EA is presented. The main result is
that separability of the objective function alone is is not sufficient to
make the cooperative coevolutionary approach beneficial. By present-
ing a clear structured example function and analyzing the algorithms’
performance, it is shown that the cooperative coevolutionary approach
comes with new explorative possibilities. This can lead to an immense
speed-up of the optimization.

1 Introduction

Coevolutionary algorithms are known to have even more complex dynamics than
ordinary evolutionary algorithms. This makes theoretical investigations even
more challenging. One possible application common to both evolutionary and
coevolutionary algorithms is optimization. In such applications, the question of
the optimization efficiency is of obvious high interest. This is true from a theoret-
ical, as well as from a practical point of view. While for evolutionary algorithms
such run time analyses are known, we present results of this type for a coevolu-
tionary algorithm for the first time. Coevolutionary algorithms may be designed
for function optimization applications in a wide variety of ways. The well-known
cooperative coevolutionary optimization framework provided by Potter and De
Jong (1994) is quite general and has proven to be advantageous in different ap-
plications (e.g., Iorio and Li (2002)). An attractive advantage of this framework
is that any evolutionary algorithm (EA) can be used as a component of the
framework.
? The research was partly conducted during a visit to George Mason University. This

was supported by a fellowship within the post-doctoral program of the German
Academic Exchange Service (DAAD).

However, since these cooperative coevolutionary algorithms involve several
EAs working almost independently on separate pieces of a problem, one of the
key issues with the framework is the question of how a problem representation
can be decomposed in productive ways. Since we concentrate our attention on
the maximization of pseudo-Boolean functions f : {0, 1}n → IR, there are very
natural and obvious ways we can make such representation choices. A bit string
x ∈ {0, 1}n of length n is divided into k separate components x(1), . . . , x(k).
Given such a decomposition, there are then k EAs, each operating on one of
these components. When a function value has to be computed, a bit string of
length n is reconstructed from the individual components by picking representa-
tive individuals from the other EAs. Obviously, the choice of the EA that serves
as underlying search heuristic has great impact on the performance of this co-
operative coevolutionary algorithm (CCEA). We use the well-known (1+1) EA
for this purpose because we feel that it is perhaps the simplest EA that still
shares many important properties with more complex EAs, which makes it an
attractive candidate for analysis.

Whether this mechanism of dividing the optimization problem f into k sub-
problems and treating them almost independently of one another is an advan-
tage strongly depends on properties of the function f . In applications, a priori
knowledge about f is required in order to define an appropriate division. We
neglect this problem here and investigate only problems where the division in
sub-problems matches the objective function f . The investigation of the impact
of the separation of inseparable parts is beyond the scope of this paper. Intu-
itively, separability of f seems to be necessary for the CCEA to have advantages
over that EA this is used as underlying search heuristic. After all, we could solve
linearly separable blocks with completely independent algorithms and then con-
catenate the solutions, if we like. Moreover, one expects that such an advantage
should grow with the degree of separability of the objective function f . Indeed,
in the extreme we could imagine a lot of algorithms simultaneously solving lots
of little problems, then aggregating the solutions. Linear functions like the well-
known OneMax problem have a maximal degree of separability. This makes them
natural candidates for our investigations. Regardless of our intuition, however, it
will turn out that separability alone is not sufficient to make the CCEA superior
to the “stand-alone EA.”

Another aspect that comes with the CCEA are increased explorative possibil-
ities. Important EA parameters, like the mutation probability, are often defined
depending on the string length, i.e., the dimension of the search space. For bi-
nary mutations, 1/n is most often recommended for strings of length n. Since the
components have shorter length, an increased mutation probability is the con-
sequence. This differs from increased mutation probabilities in a “stand-alone”
EA in two ways. First, one can have different mutation probabilities for different
components of the string with a CCEA in a natural way. Second, since mutation
is done in the components separately, the CCEA can search in these components
more efficiently, while the partitioning mechanism may afford the algorithm some
added protection from the increased disruption. The components that are not

“active” are guaranteed not to be changed in that step. We present a class of
example functions where this becomes very clear.

In the next section we give precise formal definitions of the (1+1) EA, the
CC (1+1) EA, the notion of separability, and the notion of expected optimiza-
tion time. In Section 3 we analyze the expected optimization time of the CC
(1+1) EA on the class of linear functions and compare it with the expected
optimization time of the (1+1) EA. Surprisingly, we will see that in spite of the
total separability of linear functions the CC (1+1) EA has no advantage over the
(1+1) EA. This leads us to concentrate on the effects of the increased mutation
probability. In Section 4, we define a class of example functions, CLOB, and an-
alyze the performance of the (1+1) EA and the CC (1+1) EA. We will see that
the cooperative coevolutionary function optimization approach can reduce the
expected optimization time from super-polynomial to polynomial or from poly-
nomial to a polynomial of much smaller degree. In Section 5, we conclude with
a short summary and a brief discussion of possible directions of future research.

2 Definitions and Framework

The (1+1) EA is an extremely simple evolutionary algorithm with population
size 1, no crossover, standard bit-wise mutations, and plus-selection known from
evolution strategies. Due to its simplicity it is an ideal subject for theoretical
research. In fact, there is a wealth of known results regarding its expected opti-
mization time on many different problems (Mühlenbein (1992), Rudolph (1997),
Garnier, Kallel, Schoenauer (1999), Droste, Jansen, and Wegener (2002)). Since
we are interested in a comparison of the performance of the EA alone as opposed
to its use in the CCEA, known results and, even more importantly, known ana-
lytical tools and methods (Droste et. al. 2003) are important aspects that make
the (1+1) EA the ideal choice for us.

Algorithm 1. ((1+1) Evolutionary Algorithm ((1+1) EA))

1. Initialization
Choose x ∈ {0, 1}n uniformly at random.

2. Mutation
Create y by copying x and, independently for each bit
flip this bit with probability 1/n.

3. Selection
If f(y) ≥ f(x), set x := y.

4. Continue at line 2.

We do not care about finding an appropriate stopping criterion and let the
algorithm run forever. In our analysis we are interested in the first point of time
when f(x) is maximal, i.e., a global maximum is found. As a measure of time
we count the number of function evaluations.

For the CC (1+1) EA, we have to divide x into k components. For the sake
of simplicity, we assume that x can be divided into k components of equal length

l, i. e., l = n/k ∈ IN. The generalization of our results to the case n/k /∈ IN with
k − 1 components of equal length bn/kc and one longer component of length
n − (k − 1) · bn/kc is trivial. The k components are denoted as x(1), . . . , x(k)

and we have x(i) = x(i−1)·l+1 · · ·xi·l for each i ∈ {1, . . . , k}. For the functions
considered here, this is an appropriate way of distributing the bits to the k
components.

Algorithm 2. (Cooperative Coevolutionary (1+1) EA (CC (1+1) EA))

1. Initialization
Independently for each i ∈ {1, . . . , k},
choose x(i) ∈ {0, 1}l uniformly at random.

2. a := 1
3. Mutation

Create y(a) by copying x(a) and, independently for each bit,
flip this bit with probability min{1/l, 1/2}.

4. Selection
If f(x(1) · · · y(a) · · ·x(k)) ≥ f(x(1) · · ·x(a) · · ·x(k)), set x(a) := y(a).

5. a := a + 1
6. If a > k, then continue at line 2, else continue at line 3.

We use min{1/l, 1/2} as mutation probability instead of 1/l in order to deal
with the case k = n, i. e., l = 1. We consider 1/2 to be an appropriate upper
bound on the mutation probability. The idea of mutation is to create small
random changes. A mutation probability of 1/2 is already equivalent to pure
random search. Indeed, larger mutation probabilities are against this basic “small
random changes” idea of mutation. This can be better for some functions and is
in fact superior for the functions considered here. Since this introduces annoying
special cases that have hardly any practical relevance, we exclude this extreme
case.

The CC (1+1) EA works with k independent (1+1) EAs. The i-th (1+1) EA
operates on x(i) and creates the offspring y(i). For the purpose of selection the
k strings x(i) are concatenated and the function value of this string is compared
to the function value of the string that is obtained by replacing x(a) by y(a). The
(1+1) EA with number a is called active. Again, we do not care about a stopping
criterion and analyze the first point of time until the function value of a global
maximum is evaluated. Here we also use the number of function evaluations as
time measure.

Consistent with existing terminology in the literature (Potter and De Jong
2000), we call one iteration of the CC (1+1) EA where one mutation and one
selection step take place a generation. Note, that it takes k generations until each
(1+1) EA was active once. Since this is an event of interest, we call k consecutive
generations a round.

Definition 1. Let the random variable T denote the number of function eval-
uations until for some x ∈ {0, 1}n with f(x) = max {f(x′) | x′ ∈ {0, 1}n} the
function value f(x) is computed by the considered evolutionary algorithm. The
expectation E (T) is called expected optimization time.

When analyzing the expected run time of randomized algorithms, one finds
bounds of this expected run time depending on the input size (Motwani and
Raghavan 1995). Most often, asymptotic bounds for growing input lengths are
given. We adopt this perspective and use the dimension of the search space n
as measure for the “input size.” We use the well-known O, Ω, and Θ notions
to express upper, lower, and matching upper and lower bounds for the expected
optimization time.

Definition 2. Let f, g: IN0 → IR be two functions. We say f = O(g), if

∃n0 ∈ IN, c ∈ IR+:∀n ≥ n0: f(n) ≤ c · g(n)

holds. We say f = Ω(g), if g = O(f) holds. We say f = Θ(g), if f = O(g) and
f = Ω(g) both hold.

As discussed in Section 1, an important property of pseudo-Boolean functions
is separability. For the sake of clarity, we give a precise definition.

Definition 3. Let f : {0, 1}n → IR be any pseudo-Boolean function. We say
that f is s-separable if there exists a partition of {1, . . . , n} into disjoint sets
I1, . . . , Ir, where 1 ≤ r ≤ n, and if there exists a matching number of pseudo-
Boolean functions g1, . . . , gr with gj : {0, 1}|Ij | → IR such that

∀x = x1 · · ·xn ∈ {0, 1}n : f(x) =
r∑

j=1

gj

(
xij,1 · · ·xij,|Ij |

)
holds, with Ij =

{
ij,1, . . . , ij,|Ij |

}
and |Ij | ≤ s for all j ∈ {1, . . . , r}.

We say that f is exactly s-separable, if f is s-separable but not (s − 1)-
separable.

If a function f is known to be s-separable, it is possible to use the sets Ij for a
division of x for the CC (1+1) EA. Then each (1+1) EA operates on a function
gj and the function value f is the sum of the gj-values. If the decomposition
into sub-problems is expected to be beneficial, it should be so if s is small
and the decomposition matches the sets Ij . Obviously, the extreme case s = 1
corresponds to linear functions, where the function value is the weighted sum of
the bits, i. e., f(x) = w0 +w1 ·x1 + · · ·+wn ·xn with w0, . . . , wn ∈ IR. Therefore,
we investigate the performance of the CC (1+1) EA on linear functions first.

3 Linear Functions

Linear functions, or 1-separable functions, are very simple functions. They can
be optimized bit-wise without any interaction between different bits. It is easy
to see that this can be done in O(n) steps. An especially simple linear function
is OneMax, where the function value equals the number of ones in the bit-
string. It is long known that the (1+1) EA has expected optimization time

Θ(n log n) on OneMax (Mühlenbein 1992). The same bound holds for any linear
function without zero weights, and the upper bound O(n log n) holds for any
linear function (Droste, Jansen, and Wegener 2002). We want to compare this
with the expected optimization time of the CC (1+1) EA.

Theorem 1. The expected optimization time of the CC (1+1) EA for a linear
function f : {0, 1}n → IR with all non-zero weights is Ω(n log n) regardless of the
number of components k.

Proof. According to our discussion we have k ∈ {1, . . . , n} with n/k ∈ IN. We
denote the length of each component by l := n/k. First, we assume k < n. We
consider (n−k) ln n generations of the CC (1+1) EA and look at the first (1+1)
EA operating on the component x(1). This EA is active in each k-th generation.
Thus, it is active in ((n − k) lnn)/k = (l − 1) ln n of those generations. With
probability 1/2, at least half of the bits need to flip at least once after random
initialization. This is true since we assume that all weights are different from 0.
Therefore, each bit has an unique optimal value, 1 for positive weights and 0 for
negative weights. The probability that among l/2 bits there is at least one that
has not flipped at all is bounded below by

1−

(
1−

(
1− 1

l

)(l−1) ln n
)l/2

≥ 1−
(
1− e− ln n

)l/2
= 1−

(
1− 1

n

)l/2

≥ 1− e−1/(2k) ≥ 1− 1
1 + 1/(2k)

=
1

2k + 1
≥ 1

3k
.

Since the k (1+1) EA are independent, the probability that there is one that has
not reached the optimum is bounded below by 1 − (1 − 1/(3k))k ≥ 1 − e−1/3.
Thus, the expected optimization time of the CC (1+1) EA with k < n on a
linear function without zero weights is Ω(n log n).

For k = n we have n (1+1) EA with mutation probability 1/2 operating on
one bit each. Each bit has an unique optimal value. We are waiting for the first
point of time when each bit has had this optimal value at least once. This is
equivalent to throwing n coins independently and repeating this until each coin
came up head at least once. On average, the number of coins that never came
up head is halved in each round. It is easy to see that on average this requires
Ω(log n) rounds with all together Ω(n log n) coin tosses. ut

We see that the CC (1+1) EA has no advantage over the (1+1) EA at all on
linear functions in spite of their total separability. This holds regardless of the
number of components k. We conjecture that the expected optimization time
is Θ(n log n), i. e., asymptotically equal to the (1+1) EA. Since this leads away
from our line of argumentation we do not investigate this conjecture here.

4 A Function Class With Tunable Advantage for the CC
(1+1) EA

Recall that there were two aspects of the CC (1+1) EA framework that could
lead to potential advantage over a (1+1) EA: partitioning of the problem and

increased focus of the variation operators on the smaller components created by
the partitioning. However, as we have just discussed, we now know that separa-
bility alone is not sufficient to make the cooperative coevolutionary optimization
framework advantageous. Now we turn our attention to the second piece of the
puzzle: increased explorative attention on the smaller components. More specif-
ically, dividing the problem to be solved by separate (1+1) EAs results in an
increased mutation probability in our case.

Let us consider one round of the CC (1+1) EA and compare this with k
generations of the (1+1) EA. Remember that we use the number of function
evaluations as measure for the optimization time. Note that both algorithms
make the same number of function evaluations in the considered time period. We
concentrate on l = n/k bits that form one component in the CC (1+1) EA, e. g.,
the first l bits. In the CC (1+1) EA the (1+1) EA operating on these bits is active
once in this round. The expected number of b bit mutations, i. e., mutations
where exactly b bits in the bits x1, . . . , xl flip, equals

(
l
b

) (
1
l

)b (1− 1
l

)l−b. For the
(1+1) EA in one generation the expected number of b bit mutations in the bits
x1, . . . , xl equals

(
l
b

) (
1
n

)b (1− 1
n

)l−b. Thus, in one round, or k generations, the

expected number of such b bit mutations equals k ·
(

l
b

) (
1
n

)b (1− 1
n

)l−b. For b = 1

we have
(
1− 1

l

)l−1 for the CC (1+1) EA and
(
1− 1

n

)l−1 for the (1+1) EA which

are similar values. For b = 2 we have ((l − 1)/(2l))
(
1− 1

l

)l−2 for the CC (1+1)

EA and ((l − 1)/(2n))
(
1− 1

n

)l−2 for the (1+1) EA, which is approximately a
factor 1/k smaller. For small b, i. e., for the most relevant cases, the expected
number of b bit mutations is approximately a factor of kb−1 larger for the CC
(1+1) EA than for the (1+1) EA. This may result in an huge advantage for the
CC (1+1) EA.

In order to investigate this, we define an objective function, which is separable
and requires b bit mutations in order to be optimized. Since we want results for
general values of b, we define a class of functions with parameter b. We use the
well-known LeadingOnes problem as inspiration (Rudolph 1997).

Definition 4. For n ∈ IN and b ∈ {1, . . . , n} with n/b ∈ IN we define the
function LOBb: {0, 1}n → IR (short for LeadingOnesBlocks) by

LOBb(x) :=
n/b∑
i=1

b·i∏
j=1

xj

for all x ∈ {0, 1}n.

LOBb is identical to the so-called Royal Staircase function (van Nimwegen
and Crutchfield 2001) which was defined and used in a different context. Obvi-
ously, the function value LOBb(x) equals the number of consecutive blocks of
length b with all bits set to one (scanning x from left to right). Consider the
(1+1) EA operating on LOBb. After random initialization the bits have random
values and all bits right of the left most bit with value 0 remain random (see
Droste, Jansen, and Wegener 2002 for a thorough discussion). Therefore, it is

not at all clear that b bit mutations are needed. Moreover, LOBb is not separa-
ble, i. e., it is exactly n-separable. We resolve both issues by embedding LOBb in
another function definition. The difficulty with respect to the random bits is re-
solved by taking a leading ones block of a higher value and subtracting OneMax
in order to force the bits right of the left most zero bit to become zero bits. We
achieve separability by concatenating k independent copies of such functions,
which is a well-known technique to generate functions with a controllable degree
of separability.

Definition 5. For n ∈ IN, k ∈ {1, . . . , n} with n/k ∈ IN, and b ∈ {1, . . . , n/k}
with n/(bk) ∈ IN, we define the function CLOBb,k: {0, 1}n → IR (short for Con-
catenated LOB) by

CLOBb,k(x) :=

(
k∑

h=1

n · LOBb

(
x(h−1)·l+1 · · ·xh·l

))
−OneMax(x)

for all x = x1 · · ·xn ∈ {0, 1}n, with l := n/k.

We have k independent functions, the i-th function operates on the bits
x(i−1)·l+1 · · ·xi·l. For each of these functions the function value equals n times
the number of consecutive leading ones blocks (where b is the size of each block)
minus the number of one bits in all its bit positions. The function value CLOBb,k

is simply the sum of all these function values.
Since we are interested in finding out whether the increased mutation prob-

ability of the CC (1+1) EA proves to be beneficial we concentrate on CLOBb,k

with b > 1. We always consider the case where the CC (1+1) EA makes com-
plete use of the separability of CLOBb,k. Therefore, the number of components
or sub-populations equals the function parameter k. In order to avoid technical
difficulties we restrict ourselves to values of k with k ≤ n/4. This excludes the
case k = n/2 only, since k = n is only possible with b = 1. We start our in-
vestigations with an upper bound on the expected optimization time of the CC
(1+1) EA.

Theorem 2. The expected optimization time of the CC (1+1) EA on the func-
tion CLOBb,k: {0, 1}n → IR is O

(
klb
(

l
b + ln k

))
with l := n/k, where the number

of components of the CC (1+1) EA is k, and 2 ≤ b ≤ n/k, 1 ≤ k ≤ n/4, and
n/(bk) ∈ IN hold.

Proof. Since we have n/(bk) ∈ IN we have k components x(1), . . . , x(k) of length
l := n/k each. In each component the size of the blocks rewarded by CLOBb,k

equals b and there are exactly l/b ∈ IN such blocks in each component.
We consider the first (1+1) EA operating on x(1). As long as x(1) differs from

1l, there is always a mutation of at most b specific bits that increases the function
value by at least n − b. After at most l/b such mutations x(1) = 1l holds. The
probability of such a mutation is bounded below by (1/l)b(1− 1/l)l−b ≥ 1/(elb).
We consider k · 10e · lb((l/b) + ln k) generations. The first (1+1) EA is active
in 10e · lb((l/b) + ln k) generations. The expected number of such mutations is

bounded below by 10((l/b)+ln k). Chernoff bounds yield that the probability not
to have at least (l/b)+ ln k such mutations is bounded above by e−4((l/b)+ln k) ≤
min{e−4, k−4}. In the case k = 1, this immediately implies the claimed bound
on the expected optimization time. Otherwise, the probability that there is a
component different from 1l is bounded above by k · (1/k4) = 1/k3. This again
implies the claimed upper bound and completes the proof. ut

The expected optimization time O(klb((l/b)+ln k)) grows exponentially with
b as could be expected. Note, however, that the basis is l, the length of each
component. This supports our intuition that the exploitation of the separability
together with the increased mutation probability help the CC (1+1) EA to be
more efficient on CLOBb,k. We now prove this belief to be correct by presenting
a lower bound for the expected optimization time of the (1+1) EA.

Theorem 3. The expected optimization time of the (1+1) EA on the function
CLOBb,k: {0, 1}n → IR is Ω

(
nb (n/(bk) + ln k)

)
, if 2 ≤ b ≤ n/k, 1 ≤ k ≤ n/4,

and n/(bk) ∈ IN holds.

Proof. The proof consists of two main steps. First, we prove that with probability
at least 1/8 the (1+1) EA needs to make at least dk/8e·l/b mutations of b specific
bits to find the optimum of CLOBb,k. Second, we estimate the expected waiting
time for this number of mutations.

Consider some bit string x ∈ {0, 1}n. It is divided into k pieces of length
l = n/k each. Each piece contains l/b blocks of length b. Since each leading
block that contains 1-bits only contributes n − b to the function value, these
1-blocks are most important.

Consider one mutation generating an offspring y. Of course, y is divided into
pieces and blocks in the same way as x. But the bit values may be different. We
distinguish three different types of mutation steps that create y from x. Note
that our classification is complete, i. e., no other mutations are possible.

First, the number of leading 1-blocks may be smaller in y than in x. We can
ignore such mutations since we have CLOBb,k(y) < CLOBb,k(x) in this case.
Then y will not replace its parent x.

Second, the number of leading 1-blocks may be the same in x and y. Again,
mutations with CLOBb,k(y) < CLOBb,k(x) can be ignored. Thus, we are only
concerned with the case CLOBb,k(y) ≥ CLOBb,k(x). Since the number of leading
1-blocks is the same in x and y, the number of 0-bits cannot be smaller in y
compared to x. This is due to the −OneMax part in CLOBb,k.

Third, the number of 1-blocks may be larger in y than in x. For blocks with
at least two 0-bits in x the probability to become a 1-block in y is bounded
above by 1/n2. We know that the −OneMax part of CLOBb,k leads the (1+1)
EA to all zero blocks in O(n log n) steps. Thus, with probability O((log n)/n)
such steps do not occur before we have a string of the form

1j1·b0((l/b)−j1)·b1j2·b0((l/b)−j2)·b · · · 1jk·b0((l/b)−jk)·b

as current string of the (1+1) EA.

The probability that we have at least two 0-bits in the first block of a specific
piece after random initialization is bounded below by 1/4. It is easy to see that
with probability at least 1/4 we have at least dk/8e such pieces after random
initialization. This implies that with probability at least 1/8 we have at least
dk/8e pieces which are of the form 0l after O(n log n) generations. This completes
the first part of the proof.

Each 0-block can only become a 1-block by a specific mutation of b bits
all flipping in one step. Furthermore, only the leftmost 0-block in each piece is
available for such a mutation leading to an offspring y that replaces its parent x.
Let i be the number of 0-blocks in x. For i ≤ k, there are up to i blocks available
for such mutations. Thus, the probability for such a mutation is bounded above
by i/nb in this case. For i > k, there cannot be more than k 0-blocks available
for such mutations, since we have at most one leftmost 0-block in each of the k
pieces. Thus, for i > k, the probability for such a mutation is bounded above by
k/nb. This yields

1
8
·

 k∑
i=1

nb

i
+

dk/8el/b∑
i=k+1

nb

k

 ≥ nb

8
·
(

ln k +
kl

8bk

)
= Ω

(
nb ·

(n

bk
+ log n

))
as lower bound on the expected optimization. ut

We want to see the benefits the increased mutation probability due to the
cooperative coevolutionary approach can cause. Thus, our interest is not specifi-
cally concentrated on the concrete expected optimization times of the (1+1) EA
and the CC (1+1) EA on CLOBb,k. We are much more interested in a compar-
ison. When comparing (expected) run times of two algorithms solving the same
problem it is most often sensible to consider the ratio of the two (expected) run
times. Therefore, we consider the expected optimization time of the (1+1) EA
divided by the expected optimization time of the CC (1+1) EA. We see that

Ω
(
nb ·

(
n
bk + log n

))
O (lb ((l/b) + log k))

= Ω
(
kb−1

)
holds. We can say that the CC (1+1) EA has an advantage of order at least kb−1.
The parameter b is a parameter of the problem. In our special setting, this holds
for k, too, since we divide the problem as much as possible. Using c components,
where c ≤ k, would reveal that this parameter c influences the advantage of the
CC (1+1) EA in a way k does in the expression above. Obviously, c is a parameter
of the algorithm. Choosing c as large as the objective function CLOBb,k allows
yields the best result. This confirms our intuition that the separability of the
problem should be exploited as much as possible. We see that for some values of
k and b this can decrease the expected optimization time from super-polynomial
for the (1+1) EA to polynomial for the CC (1+1) EA. This is, for example, the
case for k = n(log log n)/(2 log n) and b = (log n)/ log log n.

It should be clear that simply increasing the mutation probability in the
(1+1) EA will not resolve the difference. Increased mutation probabilities lead

to a larger number of steps where the offspring y does not replace its parents
x, since the number of leading ones blocks is decreased due to mutations. As
a result, the CC (1+1) EA gains clear advantage over the (1+1) EA on this
CLOBb,k class of functions. Moreover, this advantage is drawn from more than a
simple partitioning of the problem. The advantage stems from the coevolutionary
algorithm’s ability to increase the focus of attention of the mutation operator,
while using the partitioning mechanism to protect the remaining components
from the increased disruption.

5 Conclusion

We investigated a quite general cooperative coevolutionary function optimiza-
tion framework that was introduced by Potter and De Jong (1994). One feature
of this framework is that it can be instantiated using any evolutionary algorithm
as underlying search heuristic. We used the well-known (1+1) EA and presented
the CC (1+1) EA, an extremely simple cooperative coevolutionary algorithm.
The main advantage of the (1+1) EA is the multitude of known results and
powerful analytical tools. This enabled us to present the run time or optimiza-
tion time analysis for a coevolutionary algorithm. To our knowledge, this is the
first such analysis of coevolution published. The focus of our investigation was
on separability. Indeed, when applying the Potter and De Jong 1994 cooper-
ative coevolutionary approach, practitioners make implicit assumptions about
the separability of the function in order to come up with appropriate divisions
of the problem space. Given such a static partition of a string into components,
the CCEA is expected to exploit the separability of the problem and to gain
an advantage over the employed EA when used alone. We were able to prove
that separability alone is not sufficient to give the CCEA any advantage. We
compared the expected optimization time of the (1+1) EA with that of the CC
(1+1) EA on linear functions that are of maximal separability. We found that
the CC (1+1) EA is not faster. Motivated by this finding we discussed the ex-
pected frequency of mutations for both algorithms. The main point is that b bit
mutations occur noticeably more often for the CC (1+1) EA for b > 1 only. The
expected frequency of mutations changing only one single bit is asymptotically
the same for both algorithms. This leads to the definition of CLOBb,k, a family
of separable functions where b bit mutations are needed for successful optimiza-
tion. For this family of functions we were able to prove that the cooperative
coevolutionary approach leads to an immense speed-up. The advantage of the
CC (1+1) EA over the (1+1) EA can be of super-polynomial order. Moreover,
this advantage stems not only from the ability of the CC (1+1) EA to partition
the problem, but because coevolution can use this partitioning to concentrate
increased variation on smaller parts of the problem.

Our results are a first and important step towards a clearer understanding
of coevolutionary algorithms. But there are a lot of open problems. An upper
bound for the expected optimization time of the CC (1+1) EA on linear functions
needs to be proven. Using standard arguments the bound O(n log2 n) is easy

to show; however, we conjecture that the actual expected optimization time is
O(n log n) for any linear function and Θ(n log n) for linear functions without zero
weights. For CLOBb,k we provided neither a lower bound proof of the expected
optimization time of the CC (1+1) EA nor an upper bound proof of the expected
optimization time of the (1+1) EA. A lower bound for the CC (1+1) EA that is
asymptotically tight is not difficult to prove. A good upper bound for the (1+1)
EA is slightly more difficult.

Furthermore, it is obviously desirable to have more comparisons for more gen-
eral parameter settings and other objective functions. The systematic investiga-
tion of the effects of running the CC (1+1) EA with partitions into components
that do not match the separability of the objective function is also the subject
of future research. A main point of interest is the analysis of other coopera-
tive coevolutionary algorithms where more complex EAs that use a population
and crossover are employed as underlying search heuristics. The investigation of
such CCEAs that are more realistic leads to new, interesting, and much more
challenging problems for future research.

References

S. Droste, T. Jansen, G. Rudolph, H.-P. Schwefel, K. Tinnefeld, and I. Wegener (2003).
Theory of evolutionary algorithms and genetic programming. In H.-P. Schwefel,
I. Wegener, and K. Weinert (Eds.), Advances in Computational Intelligence, Berlin,
Germany, 107–144. Springer.

S. Droste, T. Jansen, and I. Wegener (2002). On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science 276, 51–81.

J. Garnier, L. Kallel, and M. Schoenauer (1999). Rigorous hitting times for binary
mutations. Evolutionary Computation 7 (2), 173–203.

A. Iorio and X. Li (2002). Parameter control within a co-operative co-evolutionary
genetic algorithm. In J. J. Merelo Guervós, P. Adamidis, H.-G. Beyer, J.-L.
Fernández-Villacañas, and H.-P. Schwefel (Eds.), Proceedings of the Seventh Con-
ference on Parallel Problem Solving From Nature (PPSN VII), Berlin, Germany,
247–256. Springer.

R. Motwani and P. Raghavan (1995). Randomized Algorithms. Cambridge: Cambridge
University Press.

H. Mühlenbein (1992). How genetic algorithms really work. Mutation and hillclimbing.
In R. Männer and R. Manderick (Eds.), Proceedings of the Second Conference on
Parallel Problem Solving from Nature (PPSN II), Amsterdam, The Netherlands,
15–25. North-Holland.

M. A. Potter and K. A. De Jong (1994). A cooperative coevolutionary approach to
function optimization. In Y. Davidor, H.-P. Schwefel, and R. Männer (Eds.), Pro-
ceedings of the Third Conference on Parallel Problem Solving From Nature (PPSN
III), Berlin, Germany, 249–257. Springer.

M. A. Potter and K. A. De Jong (2002). Cooperative coevolution: An architecture for
evolving coadapted subcomponents. Evolutionary Computation 8(1), 1–29.

G. Rudolph (1997). Convergence Properties of Evolutionary Algorithms. Hamburg,
Germany: Dr. Kovač.

E. van Nimwegen and J. P. Crutchfield (2001). Optimizing epochal evolutionary search:
Population-size dependent theory. Machine Learning 45 (1), 77–114.

