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Abstract

The task of understanding the dynamics of coevolutionary algorithms or com-
paring performance between such algorithms is complicated by the fact the
internal fitness measures are subjective. Though several techniques have been
proposed to use external or objective measures to help in analysis, there are
clearly properties of fitness payoff, like intransitivity, for which these techniques
are ineffective. We feel that a principled approach to this problem is to first
establish the theoretical bounds to guarantee objective measures in one CEA
model; from there one can later examine the effects of deviating from the as-
sumptions made by these bounds. To this end, we present a model of compet-
itive fitness assessment with a single population and non-parametric selection
(such as tournament selection), and show minimum conditions and examples
under which an objective measure exists, and when the dynamics of the coevo-
lutionary algorithm are identical to those of a traditional EA.

1 INTRODUCTION

Traditional evolutionary algorithms (EAs) assess the fitness of an individual objectively,
that is, independent of the population context in which the individual is placed. Co-
evolutionary algorithms (CEAs) operate much like traditional EAs except that fitness
assessment is not objective but subjective: an individual is evaluated through its interac-
tion with other individuals in the evolutionary system. Because of the subjective nature



of fitness in CEAs, it is not clear under what conditions a CEA would be expected to op-
timize in a fashion like a traditional EA would solving a static problem. Without a firmer
understanding of these conditions, the usefulness of CEAs as optimization procedures is
unclear.

We consider two common reasons why knowing these conditions would be helpful. First,
one might want to feel safe in the knowledge that the designed CEA is following the same
trajectory as a traditional EA, even if it is not clear what the traditional EA’s objective
fitness would be. Second, one might want to know an actual equivalent objective fitness in
order to measure the progress of the coevolutionary algorithm, either to analyze how the
algorithm is improving during a given run, or to compare performance between algorithms.
Indeed, understanding how the algorithm is progressing during a run is of particular
importance to coevolutionary algorithms, since a variety of pathological dynamics such
as cycling, mediocre stability, and loss of an adaptive gradient can occur to spoil search
efforts. As it turns out, these two reasons do not result in the same set of conditions: the
second condition is more specific than and implies the first.

In this paper we will shed some light on these issues with respect to a specific, common form
of coevolutionary procedure: coevolution with a single population, using a non-parametric
selection procedure such as tournament selection, rank selection, or truncation selection.
This differs from much of the coevolution theory, which has focused on two-population
coevolution and has typically applied a fitness-based (parametric) selection method. A
non-parametric selection procedure permits us to shift our focus from a fitness function to
a ranking function, allowing us to make guarantees even with unusual fitness values as long
as the ranks among individuals remain consistent. For purposes of this paper, we will also
operate under the standard EGT assumption that selection is done with full mixing, that
is, an individual’s fitness is determined through competition with every other individual
in the population, including the individual itself. In addition, the mathematical models
presented here assume infinite population sizes. Because it is tractable, complete mixing
is a standard assumption in theoretical analyses of coevolution; however we recognize that
a number of coevolutionary methods (single-elimination tournament, incomplete mixing,
fitness sharing, etc.) do not necessarily fit this model in practice. However first establishing
minimum bounds for guaranteeing objective measures in some valid CEA, we form a
principled foundation from which to later “jump off” and explore what happens when one
deviates from these bounds: for example, by gradually loosening transitivity restrictions,
or by moving from a full population-wide tournament to smaller tournaments.

This paper will first clarify terminology and make use of a basic game-theoretic framework.
We will then use this model to leverage properties of the internal subjective payoff of CEAs,
beyond that of simple transitivity, to help first understand under what conditions we may
establish a true objective measure for a given CEA, in order to chart evolutionary progress
or compare techniques. Then we relax the framework to include conditions which are not
formally objective, but still guarantee that the CEA will behave dynamically just as some
related traditional EA.

In this paper, we provide first-draft proofs of theorems.



2 TYPES OF COEVOLUTION PROGRESS MEASURES

Most attempts at competitive coevolution face the dilemma of how to chart the algorithm’s
progress in an objective fashion. To address this problem, there is a growing body of
research which is focusing on the questions surrounding assessment of coevolutionary
progress using external and objective measures. However the terminology has been used
relatively loosely until this point, even though there are clear differences between the
notions of externality and objectivity.

Historically, getting a handle on how to measure the true progress of coevolutionary
algorithms almost always involves some kind of measurement external to the algorithm’s
dynamics. For instance, Cliff and Miller (1995) uses several methods (frequently involving
ancestral history of individuals) as an external method for attempting to detect when
pathological dynamics such as cycling occurs.

This method is still subjective in the sense that the progress measurement of individuals
are contextually dependent on other individuals. They are different than the actual fitness
used by the algorithm, however, because they are external to the algorithm’s dynamics.
There are other external progress measures which have been proposed which are objective.
For instance, many optimization oriented problems have been charted using a static (and
external) representative sampling set of the strategy space (Rosin and Belew, 1997).
Watson and Pollack (2001) also explicitly describe an analysis substrate which involves
using a known external and objective measure. Additionally, order statistics have been
employed in order to determine the conditions under which arms races can occur (Ficici
and Pollack, 1998).

We feel that a clear terminological distinction should be made between the concepts of
externality and objectivity. External progress measures are ones which do not affect the
dynamics of a running algorithm, while internal progress measures are used directly or
indirectly to affect the course of an algorithm’s run. Objective measures are those in which
a given individual receives a measurement value irrespective of other individuals, while
subjective fitness measures depend on individuals which either currently exist in some
population participating in the evolution, or existed at some point during the evolutionary
run.

The problem with many subjective external measures is that, while they may help one
understand the dynamics of a given run of the algorithm, it isn’t clear how they can be used
to compare performances between algorithms. On the other hand, it is often true that we
know little about whether a given objective progress measure being used measures behavior
which is reasonable to expect from a given algorithm. Moreover, objective measures based
on sampled sets depend on how representative those sets are of true teaching sets (and
assume such exist) (Rosin and Belew, 1997).

Although these different progress measurement methods for CEAs serve different purposes,
there are at least two important characteristics one would like out of such a measure in
cases where some kind of optimization is being attempted. First, the measure should give
us some indication of an algorithm’s performance in terms of the optimization problem
we want to solve. Second, there should be some reason to believe the measure is somehow
connected to the problem in terms of the real dynamics of the algorithm. For example,
suppose the problem space being searched is that of competing behavior rule sets for some



game, such that the rules are represented by binary strings. One could provide an objective
measure for an individual which is a simple unitation of the bit string; however, we cannot
expect this measure to be helpful for understanding the progress of the algorithm, since
it has little or nothing to do with it.

This underscores one of the fundamental problems with coevolution: it is not always easy
to know what optimization problem is being solved.

3 OUR COEVOLUTIONARY MODEL

The coevolutionary model we use will focus solely on one-population coevolution. There is
some controversy over whether single-population coevolution should be called coevolution,
and this deserves some small attention here. In a biological sense, coevolution by definition
requires more than one population. What we call one-population coevolution, biologists
would call evolution, a term unfortunately already taken to describe traditional EAs, which
in reality do not have the game-theoretic aspects central to biological evolution. This leaves
one-population coevolution in the confusing situation of having no good name. Thus while
many researchers studying CEAs limit the term coevolution to situations in which there
are distinct, non-interbreeding populations (Potter, 1997; Rosin and Belew, 1997), there
are many which do not make this distinction (Juillé, 2001; Ficici and Pollack, 2000; Luke
et al., 1998). We are tempted to refer to one-population coevolution as simply a competitive
fitness function (Angeline and Pollack, 1993) except that this term is more commonly used
to describe both one-population and multi-population competitive environments. At any
rate, it is clear that both one-population and multi-population “coevolution” share certain
game-theoretic properties, and as such may have more in common with one another than
either does to traditional EAs. Therefore for the purposes of this paper, we define single
population models using competitive fitness methods to be coevolutionary algorithms.

Since we will be focusing entirely on single population coevolutionary algorithms, our
high-level framework is similar to existing abstract descriptions of evolutionary algorithms
(Vose, 1999). However, we are further restricting ourselves to the class of algorithms which
use non-parametric selection methods. In these cases, selection only considers the rank of
individuals based on fitness, rather than their actual raw fitness values. As such, the
model in Equation 1 is slightly modified to illustrate that it is some ranking function
which is of interest to us in terms of our questions regarding CEA dynamics. Thus a single
population, coevolutionary algorithm can be described by a dynamical system in which
the map function is defined as a composition of some variation operation (M), selection
operation (S), and some ranking function (R) as follows:

G = M(S(R(~x), ~x)) (1)

...where ~x represents the population vector of genome proportions.

However, in a coevolutionary algorithm internal fitness assessment is subjective by its
very nature. When comparisons to internal subjective fitness are important, we model
CEA fitness assessment in an evolutionary game theoretic way (Ficici and Pollack, 2000;
Wiegand et al., 2002). This means that, assuming an infinite population size and complete
mixing (i.e.: each individual is paired with every other individual in the population,



including itself), aggregate subjective values for genotypes (their utility) can be obtained
as follows:

~u = A~x (2)

Translating to the game-theoretic terminology, genotypes represent different playing
strategies and A specifies the payoff matrix that describes what each strategy gets when
it plays some other strategy. Since populations are infinite, ~x ∈ ∆n represents a point in
the unit simplex. This means that all component values of the vector are between 0 and
1 inclusive, and that all components of the vector sum to 1. In other words, a strategy
receives a utility which is a weighted sum of the payoffs it receives from playing the other
strategies in the population.

Unlike much of the literature, our definitions of ~u, A, and ~x permit these vectors and
matrices to be infinite in length, so long as ~u consists entirely of finite-value elements.
As ~x is in the unit simplex, this can occur if all elements in A are less than some finite
number z. It can also occur if the number of nonzero elements in ~x is finite (that is, the
population is finite in size). This extends the theory to cover not only infinite populations
of finite genotypes, but also, among other things, the more practical finite populations of
infinite genotypes.

4 PRELIMINARIES

We begin our preliminary definitions with a more formal treatment of the term objective.
An objective measure is commonly thought of as a fitness function f which takes a
genotype and assigns it a unique value. But because our model employs ranking functions
R rather than absolute fitness functions, we must establish what objectivity means with
regard to ranking.

Definition 1 A ranking function R is objective if, for any population vectors ~x, it always
establishes the same ordering among all individuals in an infinite population regardless of
the proportions in ~x.

This is not really a redefinition of objectivity: note that if there is an objective ranking
function R, then there trivially exists an objective fitness measure f : simply order all
genotypes by rank, then assign them their rank as fitness.

Definition 2 A ranking function R is existentially-objective if, for any population vec-
tors ~x, it always establishes the same ordering among individuals in an infinite population
which have non-zero proportions in ~x. An objective function is existentially-objective.

Note the crucial difference between these two definitions. Because a ranking function can
be mapped to an absolute fitness function f , the first definition implies an objective fitness
of an individual that is invariant over any population context — including populations
that do not actually contain the individual. A truly objective fitness measure allows us to
directly compare the results between techniques, or chart how fitness progresses over the
course of the run.

The second definition does not imply this: instead, it only guarantees that individuals
existing in a population will always be ranked the same way relative to one another. If the
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Figure 1 Valid weakly transitive cases, not including rotations. These correspond to the
four clauses stated in Definition 3. The leftmost figure (and its rotations) is the only valid
strongly transitive case.
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Figure 2 Invalid weakly transitive cases, not including rotations.

evolutionary system uses a non-parametric selection procedure, then this second definition
is sufficient to guarantee that individuals with a coevolved subjective fitness measure will
be selected in the exact same way that they would if they were selected R. That is, the
coevolutionary procedure is at least guaranteed to follow the same trajectory as some
traditional evolutionary procedure which uses a nonparametric selection mechanism.

If the number of genotypes were finite, then the second definition might be construed to
imply the first: if there exists a ranking function, then it must always be discoverable.
However if there are an infinite number of genotypes, we might not be able to say for
certain what “rank” an individual holds in the infinite genotype set, but still could specify
which of two individuals is ranked higher. Indeed, this is a common situation in practice.

4.1 RELATIONSHIPS TO PAYOFF

Although it is not obvious how to objectively monitor single-population coevolutionary
algorithms in general, we will show that under certain minimum bounds on the payoff
mechanism, there exist specific coevolutionary algorithms which can be objectively mon-
itored.

Before we can begin our discussion in more detail, it will be helpful to establish some
basic definitions of properties of payoff matrices, as well as properties of some kinds of
relationships between measures and payoffs. To begin with, in our model payoff values for
contests between different strategies are described by a payoff matrix (denoted Aij , where
i and j indicate specific genotypes).

One payoff property on which the coevolution community has focused has been the issue
of intransitivity. Loosely speaking, a matrix is transitive if and only if there are no cycles
in its payoff matrix. It turns out that intransitivity is not the only important attribute of
payoff matrices which make eliciting objective measures difficult, but it is a good place to
start. Below we formally define weak transitivity and its stricter form, strong transitivity.



Strong transitivity will be used immediately following in the paper; weak transitivity will
be used later on.

Definition 3 A payoff matrix A is weakly transitive iff for any distinct i, j, k the
following holds:

(Aij > Aji ∧ Ajk > Akj −→ Aik > Aki) ∧

(Aij > Aji ∧ Ajk = Akj −→ Aik > Aki) ∧

(Aij = Aji ∧ Ajk > Akj −→ Aik > Aki) ∧

(Aij = Aji ∧ Ajk = Akj −→ Aik = Aki)

Figure 1 shows valid weakly transitive cases, and Figure 2 shows invalid cases.

Definition 4 A payoff matrix A is strongly transitive iff A is weakly transitive and for
any distinct i, j : Aij 6= Aji.

Since much of our discussion centers around the notion of rank, another important concept
is one of rank equivalence. Loosely speaking, two measures are rank-equivalent if they order
genotypes in the same way.

Definition 5 Two fitness measures, f and g are rank equivalent, f ≡R g if and only if
there exists an ordering of f and of g over the possible genotypes such that ∀j, k genotypes:

(fj > fk ←→ gj > gk)

5 TRANSITIVITY IS INSUFFICIENT

Even if there is a completely transitive ordering among individuals (and thus an objective
measure), it turns out that such an ordering is not sufficient to guarantee that the
CEA will follow a traditional EA trajectory with respect to this objective measure.
Watson and Pollack (2001) demonstrated that loss of adaptive gradient can occur in two-
population models even when they are fully transitive. However, this phenomenon may be
symptomatic of the use of a multi-population model. Even so, it still turns out that neither
weak nor strong transitivity is a sufficient condition to guarantee that a coevolutionary
system will have the same dynamics as an evolutionary system, much less that an objective
measure exists which is rank-equivalent to the CEA’s subjective measure. For example,
consider a population with the zero-sum payoff matrix A and proportion vector ~x:

A =







0 6 3

−6 0 18

−3 −18 0






~x =







xi

xj

xk







This system is clearly transitive. i beats j and j beats k and i beats k. Now, imagine that
xi = 1

2
, xj = 1

2
, xk = 0. In this situation, the subjective fitness (utility) of genotype i is 3,

and the utility of j is -3. But, now imagine that xi = 1

3
, xj = 1

3
, xk = 1

3
. Here, the utility of

i is 3, but the utility of j is 4! Since the ranks of i and j depend on their proportions relative



to k, there can be no objective fitness function that is rank-equivalent to the subjective
fitness function described in this system. The reason for this is simple: just saying that in
a transitive matrix i beats j is not sufficient to argue that the coevolutionary subjective
fitness has a rank equivalence to some fitness function where fi > fj , because what matters
is not that i beat j but by how much i beat j. The spread is important.

6 GUARANTEEING AN OBJECTIVE MEASURE

So how might we go about guaranteeing that an objective measure exists which is rank-
equivalent to our CEA’s subjective measure? One of the complications in making this
guarantee is that the measure for genotype i must be independent of population context:
that is, it must be the same regardless of whether or not i is actually in presently in the
population. Because of this issue, we can establish the hard minimum requirement for a
payoff matrix A necessary for there to exist an objective measure f that is rank equivalent
to the subjective utility measure ~u.

Theorem 1 Given a payoff matrix A with the corresponding subjective utility measure
~u = A~x, if there exists an objective measure f that is rank equivalent to ~u, the following
condition must be true:

∀i, j : (fi > fj ←→ ∀k : Aik > Ajk)

Proof First we establish that this is a necessary condition for the corners of the simplex,
that is, those vectors ~xk∗ representing a population consisting entirely of a sole genotype
k. In this situation, ui = Aik and uj = Ajk. Thus for ~u to be rank equivalent with f , we
must have: (fi > fj ←→ ui = Aik > uj = Ajk)

Second, we establish that this is a sufficient condition for all remaining possible values of
the simplex ~xk∗. Since the simplex corners form basis vectors for the simplex, ~x is simply
a linear function of various simplex corners ~xk∗. As all elements in ~x are non-negative,
and at least one is non-zero, then it must be that if the corners of the simplex obey the
condition above, then for any ~x: (fi > fj ←→ ui =

∑

k
Aikxk > uj =

∑

k
Ajkxk)

A practical example which clearly meets this property is the greater than game (Watson
and Pollack, 2001; Panait and Luke, 2002). In the latter study, competitions were scored
by scaling the difference between two objective functions, while in the former competitions
are scored with 0 or 1 depending on whether a strategy scores higher than another.
Although not strictly the same, these relationships can be more or less generalized to
a linear relationship without affecting the fact that an external objective measure exists
for such a system. First let us define such a relationship more formally.

Definition 6 Given a linear transformation, Aij = αfi + βfj + γ, the internal subjective
utility u is linearly related to an objective function f , u∼Lf , if the transitive payoff
matrix A is produced using this transformation.

It’s useful to know that such a relationship exists, and thus that there exists some objective
measure that is rank-equivalent with the internal subjective utility measure. We will learn
more about this in the next couple of sections. First we prove that this generalized form
of the greater than game does indeed have this rank-equivalence property.



Theorem 2 Given a transitive payoff matrix A produced by a linear transformation of
some arbitrary objective function, u ∼L f → u ≡R f (that is, u is rank equivalent to f)
as long as α > 0.

Proof First note that the utility for a given genotype, i, can be obtained through algebraic
expansion,

ui = (A~x)
i
=

n
∑

j=1

Aijxj

=

n
∑

j=1

(αfi + βfj + γ) xj

=

n
∑

j=1

αfixj +

n
∑

j=1

βfjxj +

n
∑

j=1

γxj

= αfi + β

n
∑

j=1

fjxj + γ

It suffices now to prove that uk > ui → fk > fi. Starting with the first part,

uk > ui

αfk + β

n
∑

j=1

fjxj + γ > αfi + β

n
∑

j=1

fjxj + γ

αfk > αfi

Since α > 0, we can divide through on both sides without reversing the inequality, such
that fk > fi.

6.1 ANALYZING COEVOLUTIONARY ALGORITHMS

As we’ve already established there are many points of study regarding monitoring the
progress of coevolutionary algorithms. Two among these are comparing algorithms and
diagnosing algorithm dynamics. In both cases, having a valid objective measure will be of
use.

It is clear that having an objective measure of genotypes being coevolved will allow
researchers to confirm which of two algorithms has performed better than the other. More
specifically, we will have a reasonable external measurement with which to judge quality
of solutions found in general. Perhaps more importantly, however, having a valid objective
measure will help us detect when apparently uninteresting subjective dynamics correspond
to real improvement (so-called arms race conditions) or not. Moreover, pathological



dynamics such as cycling or mediocre stability can be more easily assessed (Watson and
Pollack, 2001).

Another use of this knowledge is the reverse question: if you have an external measure
you are using, does it really measure the objective on which the algorithm is working? If
it does not, then the objective measure is inappropriate and potentially harmful, since it
is likely to mislead its user regarding the true nature of the problem being solved by the
system.

6.2 DYNAMICAL EQUIVALENCE TO TRADITIONAL EAS

Of course the most obvious question at this point is: if there exists an objective function
that can be used to chart the true progress of the algorithm, is the algorithm essen-
tially non-coevolutionary? This is a fair and reasonable argument. But since the term
coevolutionary algorithm has more to do with the concepts involved in constructing the
evolutionary system, it is perhaps more constructive to continue to think of algorithms
with such properties as CEAs, but ask the question of whether or not their dynamics are
equivalent to some non-coevolutionary algorithm. In fact, when true rank-equivalence of
the internal subjective fitness measure exists, the coevolutionary algorithms of the type
we have been discussing are dynamically equivalent to an EA solving some problem with
the related objective measure.

Theorem 3 A single population CEA under complete mixing, employing a non-
parametric selection method using the internal subjective utility ~u = A~x is dynamically
equivalent to an evolutionary algorithm with the same selection method, using the objec-
tive function f , if u ≡R f .

Proof Given the general model of a coevolutionary or evolutionary algorithm shown in
equation 1, it suffices to prove that the result of selection will be the same, S (A~x, ~x) =
S (f(~x), ~x). However, since the selection method is non-parametric, we can see more
specifically that S (R(A~x), ~x) = S (R(f(~x)), ~x), where R is a function which assigns an
ordering to the genotypes based on the ranks of their measures. Because u ≡R f , we know
that R(A~x) = R(f(~x)) by the definition of rank equivalence.

7 BEYOND OBJECTIVITY

It turns out that one can guarantee that a coevolutionary system follows the same dynam-
ical trajectory as some traditional EA even if one does not know the relevant objective
measure. All that is necessary is to be able to demonstrate that the coevolutionary system
will order members of a population in the same way that a traditional EA would. This
requires that we find an existentially objective ranking function which is rank-equivalent
to the subjective utility measure. We have not yet discovered minimum necessary and
sufficient bounds for this situation: but we can state certain necessary conditions:

Theorem 4 Given a payoff matrix A with the corresponding subjective utility measure
~u = A~x, imagine that there exists an existentially-objective ranking function R which is



rank-equivalent to ~u. Then the following must be true:

∀i, j, k : (Ri > Rj −→ (Aij > Ajj ∧ Aii ≥ Aji) ∨ (Aij ≥ Ajj ∧ Aii > Aji)) ∧

(Ri = Rj −→ Aik = Ajk)

Proof Note that we are only showing necessary conditions, not sufficient ones. To do
this, it is required only to establish necessity for some value of ~x. We begin by establishing
necessary bounds using the proportion vector family ~xij∗ which is defined as those vectors
with non-zero proportions of the genotypes i and j, but zero proportions for all other
genotypes. In this situation, the subjective fitness of i is just Aijxj + Aiixi. Similarly,
the subjective fitness of j is Ajjxj + Ajixi. Let R be the existentially objective ranking
function, if it exists. To be rank equivalent with the subjective measure, the following
must then be true:

(Ri > Rj ←→ Aijxj + Aiixi > Ajjxj + Ajixi) ∧

(Ri = Rj ←→ Aijxj + Aiixi = Ajjxj + Ajixi)

Since xi and xj are the only nonzero values, then xj = 1 − xi. Hence these clauses may
be rewritten as:

(Ri > Rj ←→ (Aij −Ajj)(1 − xi) > (Aji −Aii)xi) ∧

(Ri = Rj ←→ (Aij −Ajj)(1 − xi) = (Aji −Aii)xi)

Collecting xi, we have:

(Ri > Rj ←→ (Aij −Ajj > (Aji + Aij −Aii −Ajj)xi) ∧

(Ri = Rj ←→ (Aij −Ajj = (Aji + Aij −Aii −Ajj)xi)

xi may range between, but not be equal to, 0 and 1. The second clause can be true over
all such xi only when Aij = Ajj and Aji = Aii, because ultimately the second clause boils
down to a = bxi, and this equation can only be true for any xi when a = b = 0. A similar
argument may be made for the first clause: as xi approaches but does not equal 1, it must
be the case that either Aji > Aii or that Aji = Aii and Aij > Ajj . As xi approaches 0
(but not quite 0), it likewise must be the case that either Aij > Ajj or that Aij = Ajj

and Aji > Aii. Together, we have the requirement that either Aji > Aii and Aij ≥ Ajj

or that Aji ≥ Aii and Aij > Ajj .

We have established the first clause in our theorem, and most of the second clause. For
the remainder of the second clause, note that for rank equivalence, the following is true
in general:

(Ri = Rj ←→ Aijxj + Aiixi +
∑

k 6=i,j
Aikxk =

Ajjxj + Ajixi +
∑

k 6=i,j
Ajkxk)

Rearranging the right half of this clause, we get

(Aij −Ajj)xj + (Aii −Aji)xi =
∑

k 6=i,j

(Ajk −Aik)xk

We have established that if Ri = Rj then it is necessary for Aij = Ajj and for Aii = Aji,
so this last rearrangement further simplifies to just

∑

k 6=i,j
(Ajk − Aik)xk = 0. Over

all values of xk ranging from 0 to 1 not inclusive, the only way this can be true is if
∀k 6= i, 6= j : Aik = Ajk. Since Aij = Ajj and Aji = Aii, we have ∀k : Aik = Ajk.



7.1 A PRACTICAL EXAMPLE

Previously we gave necessary conditions to guarantee that the CEA behaves like an EA
even in the absence of a true objective function. Here we demonstrate a practical example
which is sufficient to make this guarantee. The features of the CEA are as follows: first, the
payoff matrix must be at least weakly transitive; second, the matrix must be constant-sum
(in fact, the requirement is slightly looser than this); third, the matrix must be monotone,
that is, if i is better than j, and j is better than k, then i must beat k by at least as
much as i beats j and by at least as much as j beats k. We begin with some definitions
of matrix features, then prove the result.

Definition 7 Payoff matrix A is monotone if and only if for any i, j, k (not necessarily
distinct): Aij ≥ Aji ∧ Ajk ≥ Akj −→ Aik ≥ max(Aij , Ajk).

Definition 8 Payoff matrix A is a constant sum plus matrix if it is constant sum
(let the constant be C) on all elements except possibly the diagonal. On the diagonal, the
following hold:

Aij = Aji −→ Aii = Ajj = 1

2
C

Aij > Aji −→ (Aij > Ajj ∧ Aii ≥ Aji) ∨ (Aij ≥ Ajj ∧ Aii > Aji)

Lemma 1 If a ≥ b and a + b = c then a ≥ 1

2
c and b ≤ 1

2
c.

Proof a + a ≥ c so a ≥ 1

2
c; and b + b ≤ c so b ≤ 1

2
c.

Lemma 2 A constant sum matrix is a constant sum plus matrix.

Proof Whenever Aij = Aji = 1

2
C then Aii = Ajj = 1

2
C. Also, if Aij > Aji and

Aij + Aji = C then from Lemma 1, Aij ≥
1

2
C and Aji ≤

1

2
C. Since Aii = 1

2
C, then

Aii ≥ Aji. Since Ajj = 1

2
C, then Aij ≥ Ajj . Note: it follows that a zero-sum matrix is

also a constant sum plus matrix.

Lemma 3 If a = max(b, c) and b = max(a, c) then c ≤ a = b.

Proof Suppose that a > b. In this case, since a = max(b, c), therefore a = c. But since
b = max(a, c), then b = a, which would be a contradiction. Similar results follow from
a < b. With a = b, there is no contradiction, and further if a = b and a = max(b, c), then
c ≤ a.

Theorem 5 Let A be a monotone, weakly transitive, constant-sum-plus payoff matrix.
Then given any genotypes i and j, where proportions xi and xj are non-zero, then using
a monotone, weakly transitive, constant-sum-plus payoff matrix A, iff Aij > Aji then
ui > uj . Further, iff Aij = Aji then ui = uj.

Proof By definition, fi =
∑

k Aikxk and fj =
∑

k Ajkxk. We divide the proof into
two parts. First, we show that for any distinct genotype k not i or j, if Aij > Aji then
Aik ≥ Ajk hence Aikxk ≥ Ajkxk. Since i and j are both in the population, then xi and
xj are both nonzero, and so because A is a constant-sum-plus matrix, we know that



Aijxj > Ajjxj and Aiixi ≥ Ajixi or Aijxj ≥ Ajjxj and Aiixi > Ajixi. At any rate, for
each and every k, when Aij > Aji, then Aikxk ≥ Ajkxk, and further there exists a k such
that Aikxk > Ajkxk, so fi =

∑

k Aikxk > fj =
∑

k Ajkxk.

To show this, note that for a given k not i or j, there are three general cases that do not
violate weakly transitive constraints.

1.

i j

k

i j

k
Aij > Aji ∧ Aik ≤ Aki ∧ Ajk < Akj .

Then Akj ≥ max(Aki, Aij), so Akj ≥ Aki, so C −Ajk ≥ C −Aik, thus Ajk ≤ Aik.

2.

i j

k

i j

k
Aij > Aji ∧ Aik > Aki ∧ Ajk ≥ Akj .

Then Aik ≥ max(Aij , Ajk), so Aik ≥ Ajk.

3.

i j

k
Aij > Aji ∧ Aik > Aki ∧ Ajk < Akj .

Let C be the constant sum of matrix A. By Lemma 1, Ajk < 1

2
C < Aik.

Second, we will show that any distinct genotype k not i or j, if Aij = Aji then
Aik = Ajk hence Aikxk = Ajkxk. Then by the definition of a constant sum matrix,
Aii = Ajj = Aij = Aji. Thus Aiixi = Ajixi and Aijxj = Ajjxj so for each and every k,
when Aij = Aji, then Aikxk = Ajkxk so fi =

∑

k
Aikxk = fj =

∑

k
Ajkxk.

There are three cases that do not violate weakly transitive constraints:

4.

i j

k
Aij = Aji ∧ Aik < Aki ∧ Ajk < Akj .

Then Aki = max(Akj , Aij = Aji) and Akj = max(Aki, Aij = Aji), so from Lemma
3, Aki = Akj so Aik = Ajk.

5.

i j

k
Aij = Aji ∧ Aik > Aki ∧ Ajk > Akj .

Then Aik = max(Ajk, Aij = Aji) and Ajk = max(Aik, Aij = Aji), so from Lemma
3, Aik = Ajk.

6.

i j

k
Aij = Aji ∧ Aik = Aki ∧ Ajk = Akj .

Then from the definition of a constant plus matrix it necessarily follows that
Aik = Ajk.

This proves that if Aij > Aji then fi > fj ; and if Aij = Aji then fi = fj . To show that
the implication is also an equivalence, note that these are the only possible cases: either
Aij is equal to Aji, or one is greater than the other, and either fi is equal to fj or one is
greater than the other. Further this is a one-to-one, onto mapping: the A and f relations
each use a unique i and j pair.



In the preceding theorem, because A is weakly transitive, there is clearly an ordering
among all the genotypes. But because the proportions of the two genotypes i and j must
be nonzero in the population in order to be ranked properly, we cannot stipulate that
A’s transitive ordering acts as a truly objective measure: it is dependent in some sense,
on population context. Instead the ordering is an existentially objective measure. One
consequence of this is the fact that we do not actually need to do full mixing in order evolve
the population, if we use tournament selection: instead, we can perform lazy evaluation at
selection-time to determine which member of the tournament beats the others, and select
that member.

7.2 DYNAMICAL EQUIVALENCE WITHOUT OBJECTIVITY

In most evolutionary game theory, the assumption is made that A and ~x and ~u are finite
in size, that is, that there is a finite number of possible genotypes. This is primarily
because it is problematic to establish a distribution ~x over an infinite population with an
infinite set of genotypes. However, if we assume a finite population size, we may relax this
assumption, at least for the previous two theorems, because although ~x will be infinitely
long, we know it can have only a finite number of nonzero elements.

Thus we can apply the previous two theorems in two different ways. First, they apply to the
traditional game theory approach with infinite populations of finite genotypes. Here, the
existentially objective ranking function is always possible to determine, with enough work,
because the number of genotypes is fixed. But more interestingly, the theorems also apply
to an approach with finite populations of (countably) infinite genotypes. This is important
because it gives us practical conditions under which we may make guarantees of EA-like
dynamics in a real-world, finite population, even with countably infinite representations
such as graph or tree structures. With these representations, we may never be able to
discover the actual existentially objective ranking function in full (because the genotypes
are infinite), but we know how this function would rank any two individuals, and we also
know that the CEA is equivalent to an EA in applying this function.

8 CONCLUSIONS AND FUTURE WORK

In this paper we discussed the history behind objective and external ranking functions,
and the difficulty which coevolutionary’s subjective function presents in obtaining useful
external measures or in guaranteeing that the CEA will have dynamics similar to an EA’s.
We then established minimum conditions for a CEA to have a truly objective measure,
then gave a practical example of a CEA with an objective measure. Last, we relaxed the
conditions of objectivity, and still demonstrated situations where the CEA would have an
EA dynamics, even in the absence of an obvious objective measure.

Our technique as described here is applied to single-population coevolution, with full
mixing, and a non-parametric selection function such as truncation selection or tourna-
ment selection. As future work, we are examining three questions: first, what additional
conditions can be place upon intransitive situations such that they exhibit reasonable evo-
lutionary dynamics? Second, what may be said in the partial-mixing situations common
in real-world CEA work? Third, how can we extend these results to apply to multiple-
population models?
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