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Abstract

Though coevolutionary algorithms are currently used for optimization purposes, practi-
tioners are often plagued with difficulties due to the fact that such systems frequently
behave in counter intuitive ways that are not well understood. This paper seeks to extend
work which uses evolutionary game theory (EGT) as a form of dynamical systems mod-
eling of coevolutionary algorithms in order to begin to answer questions regarding how
these systems work. It does this by concentrating on a particular subclass of cooperative
coevolutionary algorithms, for which multi-population symmetric evolutionary game the-
oretic models are known to apply. We examine dynamical behaviors of this model in the
context of static function optimization, by both formal analysis, as well as model valida-
tion study. Finally, we begin looking at the effects of variation by extending traditional
EGT, offering some introductory analysis, as well as model validation. In the course of
this study, we investigate the effects of parameterized uniform crossover and bit-flip mu-
tation.



1 INTRODUCTION

The task of understanding coevolutionary algorithms (CEAs) is very difficult due to the dynamic
nature of their fitness landscapes. One of the more promising recent developments has been the use
of evolutionary game theory (EGT) to provide a dynamical systems analysis of CEAs (Ficici and
Pollack, 2000b). However, similar to Markov chain analyses of standard EAs, EGT-based theory of
CEAs must deal effectively with several issues if it hopes to provide strong, practical insights.

The first and most obvious issue is that most basic forms of EGT models make many simplifying as-
sumptions in order to make analysis more tractable. These include assumptions of infinite population
sizes, complete pair-wise interactions among individuals in the population(s), and a lack of varia-
tional operators. With such strong assumptions EGT models improve our understanding of simple
CEA dynamics, but don’t shed much light on the kinds of CEAs practitioners use. In addition, practi-
tioners are likely to be using CEAs to solve computational problems, and EGT models only indirectly
address questions such as how effective are CEAs at solving difficult optimization problems.

This paper addresses both of these issues by relaxing one of the most restrictive EGT assumptions
(no reproductive variation) and by relating CEA dynamics to issues of convergence to local/global
optima. We do so by focusing on cooperative CEAs (CCEAs) (Potter and De Jong, 2000) which
appear to us to be somewhat more tractable than competitive CEAs due (in part) to the existence of a
clear and obvious objective measure (which is not generally true in competitive models). We build on
recent work that has shown that a particular class of EGT models, multi-population symmetric games
(MPS), can be used to analyze the dynamical behaviors of CCEAs (Wiegand et al., 2002). This paper
extends that research by making use of existing EA dynamical systems theory tools which model
variational operators by using a type of mixing function (Vose, 1999). We then perform an initial
formal analysis of MPS systems both with and without variation.

We begin by laying out some background with respect to how and what CCEA we are modeling,
as well as a short discussion of our sample problem domain. Then we provide some analysis of
the system without variation. In the fourth section, we describe how the model can be extended to
include variation, and begin our analysis of variation by discussing the effects of uniform crossover
and bit-flip mutation, then the combination of the two operators. Finally, we conclude by discussing
what future steps should be taken in order to bring the full utility of the EGT analysis tool to bear on
CCEA models which include variation in general, and crossover in particular.

2 MODELING COOPERATIVE COEVOLUTION

Throughout this paper the following notional conventions will be used. Lower case letters will be
used to represent real numbers and functions. Vectors will be lower case letters denoted as ~x. Capital
letters will be used to denote sets and matrices. Euclidean spaces will be denoted <n, where n is
a positive integer and indicates the dimensionality of the space. Given a set of connected points in
Euclidean space, X , the interior of is denoted as int(X). The boundary of X is denoted bnd(X).
The n dimensional unit simplex is denoted ∆n. The cartesian product of two simplexes is denoted
∆n ×∆m.

We will assume a binary representation is being used when we incorporate variation. More formally,
xi refers to the ith element of the population vector, where i is a binary string in the set of all strings
of length l. That is, i ∈ Ω, where Ω = {0, 1}l and ‖Ω‖ = n, where n is the number of distinct



genotypes represented in the population. The symbols ⊕ and ⊗ will represent bit-wise exclusive or
and bit-wise and operations on binary strings, respectively.

2.1 MULTI-POPULATION EGT MODELS

In this paper we will continue to assume infinite populations, allowing us to leverage existing EA
theory (Vose, 1999) and EGT theory (Weibull, 1992; Hofbauer and Sigmund, 1998; Maynard-Smith,
1982) in which populations consist of an infinite number of individuals, but a finite number of n

distinct possible genotypes. This allows one to represent the state of a population at any given time
by a vector in the unit simplex and changes in a population over time as dynamical system trajectories
in the simplex.

While single population models are common in EGT, we will be focusing entirely on multi-
population models, in which individuals interact only with members of the other population, not
their own. To keep things simple in this paper we show how a two population model is constructed.
In such a model, a common way of expressing the payoff rewards from individual interactions is by
using a pair of payoff matrices. In general, when individuals from the first population interact with
individuals from the second, one payoff matrix is used (e.g. A), while the second population receives
rewards defined by a second payoff matrix (e.g. B). The defining characteristic of MPS games is that
they are symmetric with respect to their payoff matrices. For two population games, this means they
are symmetric when A = BT . The symmetry assumption allow for some subtle simplification of the
mathematics involved. For example, simple algebraic expansion will show that the weighted average
payoff of the first population is the same as that of the second, ~x ·A~y = ~y ·AT ~x.

Given two populations, (~x, ~y) ∈ ∆n × ∆m, representing ratios of genotypes in two infinite
populations, the following equations are used to define the dynamical system for a cooperative
coevolutionary algorithm (without variation) operating on these populations:

~u = A~y (1)

~w = A
T
~x (2)

x
′
i =

(

ui

~x ·A~y

)

xi (3)

y
′
i =

(

wi

~x ·A~y

)

yi (4)

where ~x ′ and ~y ′ represent the new population distributions for the next generation. A and AT

describe the payoffs associated with each pair of possible interactions. We also write the same system
in a more abstract way using the following two equations: Gx = S (Fx, ~x) and Gy = S (Fy, ~y).
In this model, S represents fitness proportional selection, and F is a function which assigns some
vector of relative fitnesses to the strategies. In the model shown above, given the payoff matrix A,
~u = Fx(~x, ~y) and ~w = Fy(~x, ~y)

2.2 MODELING CCEAS WITH MPS GAMES

In this paper we focus on one way in which CCEAs have been used successfully to perform function
optimization. In this approach, each population is assigned a specific argument of the function
to represent, and individuals in a given population must collaborate with individuals from other



populations in order to obtain a fitness value, the value of the objective function (Potter and De Jong,
1994).

A simple two argument function serves as an example. Suppose we would like to optimize the
function f(x, y) = x2 +y2 using cooperative coevolution. We represent potential x argument values
in one population, and potential y argument values in a second population. We would evolve the two
populations separately (i.e., they do not interbreed), but when it comes time to evaluate an individual
in the x population, we will need to select collaborating individuals from the y population in order to
obtain a value from the objective function. The same process is true in reverse for the y population,
with respect to collaborations from x.

As recent research suggests, an MPS game is a direct analogy of such a CCEA (Wiegand et al.,
2002). Assuming the number of distinct genotypes for each population is finite, we can elicit a
payoff matrix for the first population by simply determining the objective function values at each
combination of genotypes with the opposing population’s genotypes. Since the game is symmetric,
the second population uses the transpose of this matrix.

2.3 MODEL ASSUMPTIONS

With an EGT model comes a variety of simplifying assumptions. In addition to infinite populations,
assumptions must be made as to how individuals interact in order to obtain an assessment of fitness.
Although many kinds of interactions are possible, we will retain the standard EGT assumption of
complete mixing 1, meaning that during the evaluation phase of the algorithm, individuals in one
population are assumed to have interacted with all members of the alternate population in pair–wise
collaborations, and vice–versa. What this means, in terms of the algorithm, is that we will evaluate a
given member of x with every member of y (a collaborator) for collaboration purposes, and take the
average of the resulting fitness values.

We also retain the common assumption of proportional selection. However, it should be noted that the
EGT framework can and does allow for analysis of coevolution using other selection methods (Ficici
and Pollack, 2000a). Finally, although EGT models typically do not include variation operators, it
has been recently noted that modeling variation is possible (Ficici and Pollack, 2000b), and that of
course is the focus of this paper.

2.4 PROBLEM DOMAIN

Any two argument function can be mapped into a payoff matrix for a two population symmetric
game (Wiegand et al., 2002). For simplicity our studies for this paper focus on a simple 2D parabolic
function f(x, y) = k −

[

(xc − x)2 + (yc − y)2
]

. The domain values for both arguments are in the
interval [1, 8]. Here the maximum value, k = 33 is found at the center of the bowl and is located
at (xc, yc) = (4, 4). In all cases each argument is represented as a 3-bit binary string implying that
there are eight distinct genotypes represented for both populations, making a 8× 8 payoff matrix.

We chose this landscape precisely because of its simplicity. While it is simple, we are still able to
observe interesting effects variation has on search dynamics. Although in the past we have performed
analysis on somewhat more complicated landscapes (Wiegand et al., 2002), the unimodality of the

1The word ”mixing” here refers to how individuals interact, not variation. Unless it is otherwise stated, the
reader should assume that ”mixing” refers to variation in the remainder of this paper.



simple 2D parabolic function allows us to rule out certain, more complicated dynamical behaviors
(such as convergence to suboptimal, local peaks) as a means of explaining some of these effects.

3 ANALYSIS WITHOUT VARIATION

Our goal is to better understand CCEA dynamics by analyzing the corresponding MPS models from a
dynamic systems perspective. In particular, we are focusing on population trajectories, the existence
and location of fixed points and their basins of attraction. In this section we summarize what is known
for MPS models without variation, setting the stage for studying the effects due to variation.

3.1 STABILITY OF FIXED POINTS

If we exclude variation from our models, there is much which can be said analytically about MPS
models. For example, any strict Nash equilibria must contain only pure strategies; that is, they
must be at the basis vectors, the corners of the simplexes (Hofbauer and Sigmund, 1998). This
means that in the absence of variational operators, we can expect the populations in our systems
to converge to homogeneity. We also know, however, that mixed strategy equilibria are possible on
the bnd(∆n ×∆m) when the Nash points are not strict. This can happen when there are plateaus or
ridges in the objective landscape, for instance.

It will be helpful for our discussion to provide some basic definitions. When populations ~x and ~y are
both at basis vectors, we say that the those populations are associated or correspond with a payoff
value ai,j ∈ A, when ~x·A~y = ai,j . This happens when ~xi = 1 and ~yj = 1, but all other components
of both vectors are 0. Population vectors which are not basis vectors are said to be polymorphic. For
simplicity of notation, we will use the term v̄ to refer to a fixed point (~x, ~y) ∈ ∆n ×∆m, whether
polymorphic or not.

To understand the fixed point limiting behaviors of these algorithms more fully, we present proofs
of some useful properties about discrete time MPS models. Some of these properties are known to
Evolutionary Biologists studying EGT, but since their focus is not on optimization we consolidate
this information and offer theorems useful for the analysis of CCEAs in this paper. Moreover, the
proofs of the above properties are very instructive. From it we are able to also show several things
about when basis vector fixed points are purely stable and purely unstable, as well as provide the
basis for understanding how certain kinds of local convergence problems can occur in a CCEA, even
with infinite populations and no variation.

In order to provide some context for the proofs which follow it will be useful to outline our strategy
for establishing this proof. The intent is to be able to make some general statements about the
Jacobian of the system of equations generated by algebraic expansion of the replicator and selection
equations evaluated at fixed points, v̄ which are associated with the corners of the simplex. Since we
can shuffle rows and columns of the payoff matrix and the game remains the same, without loss of
generality we can restrict our discussion to the case where v̄ corresponds to the element a1,1 in the



A payoff matrix, where A can be expressed as shown below. All other cases follow as a result.

A =















a1,1 a1,2 · · · a1,n

a2,1

. . . · · · a2,n

...
...

an,1 · · · an,n















(5)

We begin by showing that there are particular patterns that will necessarily be found in the Jacobian
when evaluated at the fixed point, Jv(v̄a1,1 ). This structure allows us to make assertions about the
what the eigenvalues of the Jacobian will be in the general case. These steps lead us directly to a
theorem which tells us that the fixed point associated with the maximum value in the payoff matrix is
always stable. We then provide several corollaries which follow directly from this theorem that give
more information about the nature of stability and instability in basis vector fixed points.

Lemma 1 Let Jv be the Jacobian of the system of equations generated by algebraic expansion of
the two–population, n-strategy evolutionary game, where A is the payoff matrix and the replicator
equations are given in equations 1 – 4. Given the fixed point v̄a1,1 associated with the a1,1 item
in A, all eigenvalues of the Jacobian evaluated at the v̄a1,1 fixed point, Jv(v̄a1,1 ), are the diagonal
elements.

Proof: We begin the proof by partitioning Jv(v̄a1,1 ) into four partitions. We use these partitions
to show that Jv(v̄a1,1) must be in a particular form, then conclude it by proving that lemma 1 follows
as a result of this form.

Jv(v̄a1,1 ) can be partitioned into four equal sized partitions B, C, D, and E shown in equation 6

below. It is clear by the definition of a Jacobian that B will correspond to ∂x′

i

∂xj
, C to ∂x′

i

∂yj
, D to ∂y′

i

∂xj
,

and E to ∂y′

i

∂yj
. We will first restrict ourselves only to the B partition.

Jv(v̄a1,1 ) =

[

B C

D E

]

(6)

We omit the nth column and row from the matrix. This can be done because the xn variable may
be re-written using the other components in ~x (that is, xn = 1 − ∑n−1

i=1 xi), and because the new
proportion for the xn component in the next generation is fully specified by the equations without the
redundant x′n. Of course, a similar argument holds for the nth column and row of all four partitions.

The algebraic form of ui = ai,1y1 + ai,2y2 + · · · + ai,(n−1)y(n−1) + ai,n

(

1 −∑n−1
i=1 yi

)

can be
obtained from equations 1 and 2. Since we know in the B partition case that we will always be taking
the partials with respect to one of the ~x variables, we can go ahead and substitute the ~y values from
v̄a1,1 since they will be considered constants in the derivatives anyway. This gives us a somewhat
simpler algebraic form to use: ui = ai,1y1 +ai,n(1−y1) = ai,1. We can also substitute most of the
~x values as constants as long as we can still legitimately take the partial derivatives. Let us preserve
any elements that fall in the ith row or jth column, as well as those in the first column and row in
order to examine the partial—all other values in ~x are zero so further simplification is possible. The



x′i algebraic form is shown below.

x
′
i =

ai,1xi

x1ai,1 + xi(ai,1 − an,1) + xj(aj,1 − an,1)

If i 6= j then we can substitute either 0 or 1 for xi when taking the partial with respect to xj . If

i 6= 1, then we know that ∂x′

i

∂xj
= 0 since the numerator will remain a zero factor after the derivative.

Therefore we can say that all elements in the A partition of Jv(v̄a1,1) are zero as long as i 6= j and
i 6= 1. The form of the partition is shown below in equation 7.

Jv(v̄a1,1 ) =













j1,1 j1,2 · · · j1,n−1

0 j2,2 0 · · ·
... 0

. . . 0

(7)

By symmetry we know that the E partition has the same form.

The C and D partitions never have i = j, so we know that their diagonals are always zero. There is
only one case for these partitions that we need to worry about: when i = 1. Let us take the i = 1
case for C and return to the replicator function to get the algebraic expression after appropriate
constant substitutions ui = ai,1 +ai,jyj −ai,nyj . After simplification, the selector equation is then

x′i =
xi(ai,1+ai,jyj−ai,nyj)
x1(ai,1+ai,jyj−ai,nyj)

. The terms in the numerator and denominator cross out when i = 1

and becomes a constant, the partial of which is zero. Thus all elements in the C partition (and D by
symmetry) are zero.

Now that we have more knowledge about the structure of Jv(v̄a1,1), let us look at obtaining
the eigenvalues. Recall that to compute this, we must solve the characteristic equation such that
det

(

Jv(v̄a1,1 )− λI
)

= 0. We can compute this by expansion of cofactors on the first column. From
our above discussion we know that the first column of the Jacobian are all zeros except elements
j1,1.The cofactors of j1,1 is the product of the diagonal terms Jv(v̄a1,1 ) excluding j1,1, of course.
This can be seen by repeated application of the expansion of cofactors.

Thus the determinate is simply the product of the diagonal terms of the matrix Jv(v̄a1,1 ) − λI , so
the roots of the characteristic equation will be the diagonal elements of the Jacobian. Therefore the
eigenvalues of Jv(v̄a1,1) are its diagonal elements. 2

Lemma 2 Given Jv(v̄a1,1 ), the following properties are true.

∂x′i
∂x′i

(

v̄a1,1

)

=
ai,1

a1,1
∀i 6= 1 (8)

=
an,1

a1,1
i = 1 (9)

∂y′i
∂y′i

(

v̄a1,1

)

=
a1,i

a1,1
∀i 6= 1 (10)

=
a1,n

a1,1
i = 1 (11)

(12)



Proof: Again let us focus on partition B of Jv(v̄a1,1 ). Returning to the replicator equation 4
after appropriate constant substitution, we get ui = ai,1y1+ai,n(1−y1) = ai,1. There are two cases:
i 6= 1 and i = 1. In the fist case, again retaining xi for the partial, we substitute the remaining values
for ~x as constants and obtain the following selection equation and subsequent partial derivation.

x
′
i =

xiai,1

x1a1,1 + xi(ai,1 − an,1)

∂x′i
∂x′i

(

v̄a1,1

)

=
ai,1x1a1,1

(x1a1,1 + xiai,1 − xian,1)
2

=
ai,1

a1,1

In the case where i = 1 we do not preserve xi of course, so we obtain the following after relevant
substitution.

x
′
i =

x1a1,1

x1a1,1 + an,1 − x1an,1

∂x′i
∂x′i

(

v̄a1,1

)

=
a1,1an,1

(an,1 − a1,1 − an,1)

=
an,1

a1,1

The proof for the ∂y

∂i
i case can be obtained from the D partition by symmetry. 2

Theorem 1 Let m be a unique maximum value in A, m = max(A). Given a non-polymorphic fixed
point v̄, if the payoff value ai,j = m and v̄ corresponds with ai,j , then v̄ is a stable fixed point.

Proof: Given ai,j = m and that ai,j can be moved into position a1,1, then all eigenvalues are
< 1 by lemma 2. 2

Corollary 1 Noting in lemma 2 that all the eigens for a particular v̄ are ratios of A values at some
fixed column or row, and applying the same juxtaposition logic from theorem 1, it follows directly
that any ai,j that is the unique maximum value of the ith row and jth column of A is also a stable
fixed point. More formally if

ai,j > al,j ∀l 6= i, and

ai,j > ai,k ∀k 6= j,

then v̄ai,j
is a stable fixed point.

Corollary 2 As per corollary 1, lemma 2 and theorem 1 dictate that any ai,j that is the minimum
value of the ith row and jth column of A is a purely unstable fixed point (meaning all its eigenvalues
are > 1). More formally if

ai,j < al,j ∀l 6= i, and

ai,j < ai,k ∀k 6= j,

then v̄ai,j
is a purely unstable fixed point. The global minimum value, min(A) is always purely

unstable. Additionally any other fixed points at the corner of the simplex which are neither purely
unstable nor stable will be an unstable saddle point.



Corollary 3 From corollaries 1 and 2 we also know that the maximum number of stable basis vector
fixed points is n and the minimum number of stable basis vector fixed points is 1. The same rule is
also true for the number of purely unstable fixed points. Therefore the number of unstable saddle
basis vector fixed points must be at least n2 − 2n.

What does this analysis tell us about convergence and optimization? First, let us say that by
”convergence“ here, we are loosely connecting our dynamical systems ideas to the intuitional notions
of population convergence common in the EC community. When trajectories limit to a fixed point
at the basis vector, this corresponds to the populations becoming homogeneous. The question is,
where can this occur in terms of the fitness landscape? Recall that in our MPS model of cooperative
coevolution, the payoff matrix is really just a quantized version of our fitness landscape. Given
this, perhaps the most important thing worth noting is that (even with an infinite population, no
variation, and unique values in the fitness landscape) a form of “local” convergence is possible, since
trajectories can fall to basis vectors which correspond with suboptimal fitness values. This is not
possible in the simple genetic algorithm under the same assumptions (Vose, 1999).

However, knowing the stability of a fixed point in a system does not necessarily indicate how likely
it will be reached by any arbitrary initial condition, unless more is known about the dynamical
system (Hofbauer and Sigmund, 1998). Fortunately, even without the deeper understanding required
for formal proofs, considerable insight into these issues can be obtained by iterating the model
computationally from randomly chosen initial conditions. In the following section we summarize
these insights for MPS models without variation as a baseline for studying the effects of variation.

3.2 POPULATION TRAJECTORIES AND BASINS OF ATTRACTION

The basin of attraction of a given fixed point (or, indeed, any limiting behavior) is the set of initial
points that will eventually map to that point (or appropriate limit behavior). Of interest is the size
of a fixed point’s basin of attraction relative to the other fixed points to which trajectories go. In
other words, viewing convergence to a basis vector as a collapse to homogeneity in both popula-
tions, knowing the relative sizes of the basins of attraction of each possible pair of homogeneous
populations should give us insight into how likely it is that a pair of random initial populations will
converge to some particular pair of homogeneous populations.

There is reason to believe that the size of the basins of attraction of a fixed point indicated by a
basis vector has more to do with relative local column and row values in the payoff matrix than how
large the specific payoff value is at that point. In other words, there is reason to believe that broad,
suboptimal peaks will pull trajectories away from taller, more narrow peaks. This is a form of local
convergence that has been recognized in CEAs (Ficici and Pollack, 2000b; Wiegand et al., 2002).

To estimate the size of a basin of attraction we use a simple method called a rain gauge measure
(Alligood et al., 1996). Details motivating this technique for the MPS model are provided by Wiegand
et al. (2002). Briefly, this method consists of generating a large number of (uniformily) randomly
generated initial conditions and, for each starting point, iterating the model until a fixed point is
reached. The percentage of trajectories leading to a particular fixed point is used as an estimate of
the size of its basin of attraction.

So, for example, if we apply this technique to the simple unimodal quadratic function described in
section 2.4, we obtain the expected result that, for MPS models with no variation, every trajectory
leads to the basis vector fixed point associated with the global optimum. That is, when we choose



an initial starting state for the population at random, the model predicts that a CCEA algorithm will
converge to homogeneity at the global maximum of this function.

Iterating the model not only affords us with the opportunity to assess the relative sizes of the basins
of attraction. An additional benefit is its ability to help us to visualize and characterize the trajectories
themselves. We do this using a plot similar to the so-called takeover curves used for standard GA
analysis (Goldberg and Deb, 1990), except in our case these curves must be two dimensional in
order to capture both populations. The plots are constructed by first identifying which genotypes
correspond with the maximum payoff value in each population and plotting over time the proportions
of these genotypes in their respective ~x and ~y population vectors. Figure 1 illustrates this for several
example trajectories. Each curve begins at the point indicated by a hollow circle, and terminates at
the point indicated by an ”x” (in this case all of these terminate in the corner). Every 100 steps
of the trajectory are marked on the curves to get an idea of the rate of progress of the curves,
though all points on the plot represent steps produced by the model. In this way, one can track
the proportions of the components associated with the maximum value over time as they move from
the initial population configurations toward its ultimate limit behavior. Asymmetries in the projected
trajectories are due to asymmetric differences in the initial points, which were chosen randomly, or
asymmetries which exist in the function itself (the latter of which, in this case, is minimal).
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Figure 1 2D Takeover plot for trajectories operating on the simple quadratic problem with no
variation. Curves begin at points indicated by hollow circles, and terminates at the point indicated by
an ”x”. Every 100 steps of the trajectories are marked.

Using these methods it is fairly easy to show, for example, that MPS models without variation can
and do converge to local suboptimal peaks on multi-peak landscapes (Wiegand et al., 2002). This
should already be clear from our earlier analysis; however, since we now know that suboptimal
values in the payoff matrix that are strictly maximal on the its row and column are associated with
basis vectors which are stable fixed points of the system. Using this knowledge, it isn’t difficult
to construct problems which are likely to “pull” trajectories from the global peak. We do this by
making sure the rows and columns in the payoff matrix corresponding with the suboptimal local
peak are significantly biased over the row and column values corresponding with the global peak.
Indeed, this is precisely what the Wiegand et al. (2002) study does, and the model validation results
support this hypothesis.



4 ANALYSIS WITH VARIATION

In order to extend the MPS framework to model variational operators, we have employed the methods
outlined by (Vose, 1999) in which the dynamical system becomes a composition of the orignal
model and a variational mixing function, M. We assume that the variational operators are the
same for both populations and the populations have the same number of distinct genotypes, so the
same M can be used for both populations. With these asumptions our MPS model now becomes:
Gx = M (S (Fx, ~x)) and Gy = M (S (Fy, ~y)).

By adopting this approach we also commit ourselves to modeling populations of binary strings and
the variation due to the standard binary string operators of crossover and mutation. The mixing
function works by first eliciting the probabilities that the all zero string is produced given two parents
of any genotype. These probabilities form an n×n matrix, M . The population vectors resulting from
selection are then processed using permutations of this matrix (see Vose (1999) for more details).
Given this and the ~x′ and ~y′ results from the standard MPS replicator Equations 1- 4, we can now
obtain the next generation’s population states (now notated ~x′′ and ~y′′) from the following equations:

x
′′
k =

∑

i,j∈Ω

x
′
ix
′
jMi⊕k,j⊕k (13)

y
′′
k =

∑

i,j∈Ω

y
′
iy
′
jMi⊕k,j⊕k (14)

The reader is referred to Vose (1999) for a more in depth explanation of how these mixing matrices
are constructed for particular operators.

4.1 FIXED POINTS UNDER MIXING

There is little doubt that variational operators significantly change the underlying dynamical system
of a CCEA algorithm, just as they do in a traditional EA. Not only can the underlying limiting
properties of the fixed points of the system change, but the location of the fixed points themselves
can change. To see this, note that for a fixed point of the MPS model to also be a fixed point of the
variational model, ~x′′ = ~x′ = ~x and ~y′′ = ~y′ = ~y, which means we can re-write Equations 13
and 14 as follows.

x
′′
k =

∑

i,j∈Ω

xixjMi⊕k,j⊕k (15)

y
′′
k =

∑

i,j∈Ω

yiyjMi⊕k,j⊕k (16)

As we saw earlier, the fixed points of MPS models without variation were basis vectors. What
happens when variation is added? Suppose we are interested in the basis vectors associated with
payoff value apq , that is xi = 0, ∀i 6= p, xp = 1 and yi = 0, ∀i 6= q, yq = 1. If such is the case,
then the resulting values from the above equations is always 0, except when i = j = p in the first
case and i = j = q for the second case. Thus, the next point in the trajectory, when starting at the
basis vector is the following:

x
′′
k = Mp⊕k,p⊕k (17)

y
′′
k = Mq⊕k,q⊕k (18)



There are two important things to note about this simplification. First, one can ascertain the
G1

x(~x, ~y),G1
y(~x, ~y) step of the MPS model from any arbitrary basis vector point from just the mixing

matrix. Second, resulting values turn out to be diagonals of the pth and qth permutation of the
mixing matrix for Gx and Gy, respectively. If this diagonal is equal to the original bases, then the
fixed point of the original system is also a fixed point of the system under variation, and if not then
it is not. As we will discuss in the following sections, this is always true for crossover and never true
for mutation.

Assessing fixed point stability under mixing is harder, since the fixed points may now be in the
interior of the simplex product. This means that it becomes necessary to simultaneously solve the
collective system for Gx(~x, ~y) = ~x and Gy(~x, ~y) = ~y. However, when we are certain that the
basis vectors are fixed points, even under mixing, we can evaluate them as we did in the previous
paragraph.

4.2 STABILITY OF FIXED POINTS

Unlike the MPS models without variation, the stability of fixed points of the model under variation
is a function of M . Moreover, this dependence is not due simply to the inclusion of M itself into the
model, but also from the resulting non-linearity added from the crossover operation itself. The proof
of this is trivial, but we offer it for the sake of completeness.

Theorem 2 Let v̄ be a fixed point of the cooperative coevolutionary algorithm with variation as
described by equations 13 and 14. The stability of such a fixed point will depend on the specific
values in the mixing matrix, M .

Proof: To assess the stability of a fixed point, we must first know what the fixed point is. We
will see shortly that while some of the fixed points are known for crossover, this is not necessarily
true for mutation (or for mutation and crossover). Still, assuming we knew what the fixed point was,

we could take the Jacobian of the system evaluated at that fixed point. Let’s look at one term ∂x′′

k

∂xl
,

but first let’s expand and re-write the equations 13 and 14. We use the variable f for the convenience
of notational simplification only.

x
′′
k =

∑

i,j∈Ω

(A~y)ixi(A~y)jxjMi⊕k,j⊕k

(~xT A~y)2

=

∑

i,j∈Ω(A~y)jxi(A~y)jxjMi⊕k,j⊕k

(~xT A~y)2
=

f

(~xT A~y)2

∂x′′k
∂xl

=

∂f

∂xl
·
(

~xT A~y
)2 − f · ∂

∂xl

(

~xT A~y
)2

(~xT A~y)4

=

∂f

∂xl
·
(

~xT A~y
)2 − f · 2

(

~xT A~y
)

(A~y)l

(~xT A~y)4

We can take the partial of f now and obtain (A~y)l

∑

i∈Ω,i6=l
(A~y)ixlMi⊕k,l⊕k +

2(A~y)2l xlMl⊕k,l⊕k . By symmetry, the same is true for ∂y′′

k

∂yl
. From this we learn that both

terms in the numerator depend on values from M , and that they cannot be eliminated. 2



Although this fact was perhaps already obvious, the proof is instructive since it illustrates the fact that
the non-linearity introduced by equations 13 and 14 presents a far more complicated expression that
requires the change in any given component depends on all the components from both populations.
This differs from the model without variation, since in that case taking the derivative allowed us to
eliminate all components of one population from the expression.

4.3 PARAMETERIZED UNIFORM CROSSOVER

We now focus on the effects of crossover alone. In this case, regardless of the type of crossover, the
probability of obtaining some string k when crossing over two identical parents is 0 unless the parents
are themselves k. When k is crossed over with k, the probability that the resulting child is also k is
1. Thus the diagonal of the kth permutation of M is always 1 at mkk and zero everywhere else,
implying that the pairs of basis vectors forming fixed points of the MPS model without variation are
still fixed points under crossover. This is consistent with our intuitional understanding of the effect
of crossover on a totally homogeneous population (namely that there is no effect).

In order to study the effects of crossover on population trajectories and basins of attraction, we
need to complete our MPS model by selecting a particular crossover operator and constructing the
corresponding mixing matrix M . For our initial work we chose to model parameterized uniform
crossover (Syswerda, 1989; Spears and De Jong, 1991). Here pc represents the probability that a
crossover event will occur. If a crossover event occurs, two individuals are mated and each bit position
is considered independently for potential exchange. The parameter ps represents the probability
that the values at a given bit position will be exchanged between the mates. Therefore ps = 0.5
corresponds with traditional uniform crossover.

Having done so, we are now in a position to repeatedly iterate the model as before on the same simple
two-dimensional parabola and assess the effects of crossover on population trajectories and basins
of attraction. Since we know that the basis vectors of the Cartesian product of the unit simplexes are
also fixed points of this model (though not necessarily stable in the same places), we can perform
similar kinds of rain-gauge measures as was done in the previous section. However, we must be
careful to account for any trajectories which do not converge to a basis vector, since the existence
of interior fixed points have yet to be formally eliminated as a possiblity as it was without variation.
As it turned out, all of the trajectories converged to a basis vector of one sort or another. Moreover,
existing analysis suggests to us that stable interior equilibria are not possible in the simple GA, with
only crossover (Vose, 1999).

Initially, we set ps = 0.5 to obtain pure uniform crossover and varied the rate of crossover, pc

between 0.0 and 1.0. All trajectories moved to one of four basis vectors, those vectors associated
with the a4,4, a4,5, a5,4, and a5,5 payoff values (the center four cells of the payoff matrix, from the
top left as described in equation 5 and page 6). Example results are shown in Table 1. This shows the
percentage of trajectories from the randomly chosen initial populations that go to each of the four
afore mentioned basis vectors. More specifically, it shows that as the rate of crossover is increased,
the number of initial points which eventually converge to a fixed point associated with the global
maximum shrinks. In other words, the measure of the size of the basin of attraction of that fixed
point associated with the global peak is reduced by increasing crossover.

The reader should be careful not to draw too many conclusions about the significance of the
”nearness“ of these fixed points from a topological point of view. From the simplex product space,
every basis vector is a distance of either 1.0 or

√
2 from every other basis vector, of course. Moreover,



as long as the relationships between the strategies of the game remain the same, one could permute
the payoff matrix and the underlying dynamics would not change at all. Thus it is possible to imagine
the very same model with resulting measures that seem topologically farther apart. The relationship
almost certainly has to do with the level of fitnes on a given row and column relative to other
strategies.

Table 1 Rain gauge results of model validation studies on MPS cooperative coevolution model
with uniform crossover. The tables represent the measure of the basins of attraction of the fixed
points associated with the a4,4, a4,5, a5,4, and a5,5 payoff values. The probability of crossover, pc is
varied.

pc = 0.00 100 % 0 %

0 % 0 %

pc = 0.10 81.7 % 11.7 %

6.6 % 0 %

pc = 0.20 75 % 15.8 %

8.4 % 0.8 %

pc = 1.00 57.5 % 23.3 %

11.7 % 7.5 %

We also looked at parameterized uniform crossover when ps = 0.2 and pc = 1.0. The results for this
showed that the (4, 4) basin captured roughly 62.6% of the trajectories, while the (4, 5), (5, 4), and
(5, 5) basins captured 16.2%, 17.0% and 4.2% of the trajecories, respectively. Again, all trajectories
found their way to one of these four basis vectors.

This is an interesting result. This suggests that it is possible that previously unstable basis vector fixed
points become stable attractors under crossover. In a sense, crossover seems to ”distract“ trajectories
from always converging to the basis vector associated with the maximum value. To get a sense for
why this might be, we looked at the 2D takeover plots shown in figure 2.
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Figure 2 2D takeover plots for MPS trajectories in with uniform crossover. Reading from the left
to the right, pc = 0.00, 0.05, and 0.10.

There is clearly some kind of stretching transformation going on as a result of crossover. As the
rate of crossover increases, the trajectories are pushed away from the center and move toward the
edges at a much faster rate. In some cases these trajectories are drawn to basis vector fixed points
(homogeneous populations) not associated with the global optimum. This behavior is observed in
CCEA applications as well where one population converges much faster than the other and reduces
the dimensionality of the search by collapsing the space in which trajectories can pass to a face of



the Cartesian product simplex. This corresponds to a reduction of the space to the unit simplex for
the second population, still evolving population.

We believe this happens due to the accelerating effect crossover can have on population convergence
(Menon, 2002; Rabani et al., 1998). This acceleration is applied asymmetrically, since the initial
conditions of the populations are almost certainly asymmetric. To test this hypothesis, we ran an
additional experiment in which all initial points for ~x were chosen uniformly at random from the unit
simplex, and all initial points for ~y were set symmetrically, ∀i (~y)

i
= (~x)

i
, where (~x)

i
is the ith

initial point. Although not all trajectories converge to proper basis vector (the corner associated with
the maximum value), none converged sooner in one population than in the other.

4.4 BIT-FLIP MUTATION

In a similar fashion we can construct the mixing matrix M for the bit-flip mutation operator. In
this case, the diagonal elements of M cannot be basis vectors as long as pm 6= 0 and pm 6= 1
since a population which is completely converged cannot remain so after mutation (in an infinite
population model). Therefore it is fair to conclude that the basis vectors are no longer fixed points
under mutation.

Unfortunately, this means that rain gauge measures of the type we have been performing are not
reasonable. Instead, we can measure the distance of the point to the basis vector associated with the
maximum payoff value. We ran trajectory studies with pm set to a variety of values. The result was
that all the trajectories converged on the same fixed point in all cases for a given pm value, but that
this point moved into the interior of the simplex product as mutation was increased. Figure 3 shows
the 2D takeover plots for a few of these runs, which allow us to visualize only a projection of the
trajectories. Still we notice that the distortions of the trajectories due to mutation are quite different
than those produced by crossover.
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Figure 3 2D takeover plots for MPS trajectories in with bit-flip mutation. Reading from the left to
the right, pm = 0.00, 0.005, and 0.05.

This behavior matches our intuition, as well as known results for the simple GA. As mutation is
increased, the limiting behavior is characterized as a distribution of population states which spread
out away from the peak into the rest of the fitness landscape.

4.5 MUTATION AND CROSSOVER

Studying the effects of MPS models with both crossover and mutation is now a straightforward
exercise in producing a combined mixing matrix. It is clear that the basis vectors are no longer fixed



points. What is unclear is whether the combination of both operators will amplify the trajectory
distortions produced individually, diminish them, or produce some other effect.
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Figure 4 2D takeover plots for MPS trajectories in with bit-flip mutation and parameterized
uniform crossover. Reading from the top left plot clock-wise, (pc = 0, pm = 0), (pc = 0, pm =
0.005), (pc = 1.0, pm = 0.005), and (pc = 1.0, pm = 0). In all cases with crossover, ps = 0.2.

Figure 4 shows four combinations of the model. Interestingly, the result of combining the variation
operators is additive in a sense. In our studies, trajectories fall towards the basis vectors associated
with the center four payoff values as they did under crossover alone. The bottom two graphs in
figure 4 shows us a projected version of this effect. However, observing the right two graphs, we see
that the limit point is pulled into the interior of the simplex product space due to mutation.

5 CONCLUSIONS

The goal of this paper was to understand better the dynamical properties of CCEAs particularly
with respect to their use as function optimizers. The approach taken was to extend existing MPS
EGT models to include standard crossover and mutation operators, and relate the fixed points
of these models to local/global optima convergence properties. This analysis was based on both
theorems concerning model properties and the use of rain gauge measures and trajectory visualization
techniques.

The result is a much clearer understanding of how the variation due to crossover and mutation
affects the dynamics of CCEAs and their ability to converge to local/global optima. These results



are clearly an intermediate step to a full understanding of these issues. The rain gauge measures
and takeover plots provide useful intuitions rather than formal proofs. The MPS models still have a
number of simplifying assumptions such as complete mixing and infinite populations that need to
be weakened or eliminated in order to make stronger predictions about practical CCEA applications.
However, we are pleased in general with the usefulness of the EGT framework as a tool for analyzing
coevolutionary systems and plan further work in this area. Our next steps include continued formal
analysis of variation, as well as the introduction of Markov modeling methods to relax the infinite
population assumption. Afterwards, we would like to develop some probability-based models which
effectively bias the population vectors based in ways that might be analogous to existing partial
mixing models.
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