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Abstract—The task of understanding coevolutionary algorithms is  general is quite different from standard (non-coevolutionary)
a very difficult one. These algorithms search landscapes which are in EAs  and furthermore competitive CEAs behave quite dif-
some sense adaptive. As a result, the dynamical behaviors of coevolu-, ' . . . .
tionary systems can frequently be even more complex than traditional ferent.Iy than cooperative CEAs. This raises two important
evolutionary algorithms (EAs). Moreover, traditional EA theory tells ~ questions: what body of EA theory can be used to help
us little about coevolutionary algorithms. One major question thathas ys understand CEAs better and what kinds of pr0b|em3 are
yet to be clearly addressed is whether or not coevolutionary algorithms CEAs best suited for? A kev element in answerina these
are well-suited for optimization tasks. Although this question is equally . . ) y . . 9
applicable to competitive, as well as cooperative approaches, answering JUEStiONs is a better understanding of the dynamics of CEAs
the question for cooperative coevolutionary algorithms is perhaps more which are considerably more complex than standard (non-
attainable. _ _ coevolutionary) EAs, since the fitness landscape is itself

Recently, evolutionary game theoretic (EGT) models have begun evolving over time. This means a CEA is in principle a much
to be used to help analyze the dynamical behaviors of coevolution- 9 : . . p p -
ary algorithms. One type of EGT model which is already reasonably more open-ended adaptive system [3] in the sense that it can
well understood aremulti-population symmetric games/e believe these gyglve entirely new fitness gradients over time[1].
games can be used to analytically model cooperative coevolutionary al- o : :
gorithms. This paper introduces our analysis framework, explaining As a cons.equence much of the initial work ”,1 theoretical
how and why such models may be generated. It includes some exam-CEA analysis has focused on tools for modeling and ana-
ples illustrating specific theoretical and empirical analyses. We demon- lyzing CEA dynamics. One of the more promising recent
strate that using our framework, a better understanding for the degree developments has been the use of evolutionary game the-
to which cooperative coevolutionary algorithms can be used for opti- . . .
mization can be achieved. ory (EGT) to prowde a dynamlca_ll systems analysis of CEAs
[4]. A dynamics systems analysis directly addresses the first
of the two questions raised earlier by providing a better un-
_ ~_derstanding of CEA dynamics, but only indirectly addresses
~ Inthe past few years there has been an increase in integ@féstions such as how effective are CEAs at solving difficult
in coevolutionary algorithms (CEAs), i.e., evolutionary alpptimization problems.
gorithms (EAS) in which the fitness of individuals is not de- In this paper we focus moperativ@EAs (CCEAs) and
termined in an independent fashion by invoking an externglesent two interesting results. First we show how EGT can
fitness function, but rather the fitness of an individual is d%‘e used quite natura”y to model Cooperative CEAS, even
ter_mlned by its interactions with other individuals in the evahough intuitively one might expect that EGT is better suited
lutionary system. Much of the work on CEAs has focuseghr competitive CEA analysis. Second, because cooperative
on two kinds of interactioncompetitivecoevolutionary sys- CEAs have a more natural interpretation as solving an op-
tems anccooperativecoevolutionary systems. Competitiveiimization problem, the EGT analysis also provides some
CEAs are natural models for evolving objects such as gamgight into the behavior of CCEAs as optimizers.
playing programs for which itis difficult to write an external  \ve begin with some background discussion regarding evo-
fitness function, but quite simple to define fitness in terms Rftionary game theory, and introduce the conceptnofti—
compet@tive success against oth_er programs in the evoIviﬁgpu|ation symmetric gamésIPS) [5], the subclass of EGT
population (e.g., [1]). Cooperative CEAs are natural moghodels that will be used to model and analyze these kinds
els for evolving complex objects by decomposing them inig cooperative coevolutionary algorithms. We then describe
subassemblies that coevolve, and subassembly fitness istg-particular CCEAs under study and show how MPS can
termined by how well it works with the other subassembligse used to model them. In section four we present our initial
in producing a complete object (e.g., [2]). “MPS analysis, introduce the idea of usimin gauge mea-

Itis very clear from this work that the behavior of CEAs insyresas a form of empirical model validation [6], and then

IThis material has been reviewed by the CIA. That review neither coH—Se this method to shed “ght of the behavior ofa CCEAas an

stitutes CIA authentication or information nor implies CIA endorsement &@Ptimizer on two simple functions. Finally, we will conclude
the author’s views. by discussing the impact of these results, both in terms of the

I. INTRODUCTION



specifics of what is learned, as well as the general messagg The cartesian product of two simplexes is dendi&dk
regarding the applicability of the MPS game framework. A™.

1. EVOLUTIONARY GAME THEORY B. Two Population Evolutionary Game Models

EGT describes a set of dynamical systems models for Virtually any EA can be considered a dynamical system
which modern dynamical systems theory can be used {8]. By assuming that populations consist of an infinite num-
analyze evolutionary processes [5], [7], [8] and, as we wilber of individuals, but a finite number afdistinct possible
see, coevolutionary algorithms fit very nicely into this genotypes, one can represent the state of a population at any
game—-theoretic framework. given time by a vector of real values each element of which

In evolutionary game theory, we are working with modelgeepresents the fraction of each genotype in the population.
of populations of individuals who are interacting with on&ince such vectors must sum to one, they are all in the unit
another. Individuals repeatedly meet and receive some samplex ¢ € A™). Hence, changes in the state of a popula-
ward or punishment for the experience (payoff), based ¢ion over time are modeled as dynamical system trajectories
how their genes tell them to "play the game” (strategy). Thia the simplex.
process, influenced by selection, continues and we (the modin our case, the system that defines the dynamics of a
elers) observe the change in the population(s) that res@CEA is developed using aiv population evolutionary
Traditionally standard, fithess proportional selection is agame theoretic model. To keep things simple in this pa-
sumed and is used in this paper as well.. per we show how a two population model is constructed.

While single population models are common in EGT, thiShe key element is understanding how replication is han-
paper will be focusing entirely on two population models, idled. The equations which follow show the two population,
which individuals interact only with members of the othediscrete time version of replicator dynamics.
population, not their own. Further, though many kinds of
interactions are possible, we will assuc@mplete mixing

meaning that during the evaluation phase of the algorithm, i = Ay (1)

individuals in one population are assumed to have interacted W = BT 2)

with all members of the alternate population in pair—wise , U;

collaborations, and vice—versa. i T W (;Z ﬁ) 3
This research also assumes that populations are infinite in , w;

size, and we deal with expected fitness based on distribu- Yi = Ui (5 w) (4)

tions across the finite number of pure strategies (genotypes).

Additionally, we will concern ourselves with discrete time WhereZ’ andy’ represent the new population distribu-

(generational) models. tions for the next generationA and B describe the pay-
Finally, although EGT models typically do not includeoffs associated with each pair of possible interactions. In

variation operators, it has been recently noted that mod#te above systen¥ describes the payoffs that the first pop-

ing variation is possible [4]. We are currently studying forulation, Z, receives when it interacts with members of the

malisms that include variational operators but will not dissecond populationj, and B describes the reverse.

cuss variation in this paper. Frequently an additive constant appears in the first equa-
) tion, @ = Ay + w,, wherew, = 1 — min (A), as well as
A. Notation a similar constant for the second equation. These constants

Before introducing the mathematical model, some bagi¢e used to make sure elementsi@ndw are non-negative.
notional conventions must be established. Lower case I&his is so that under proportional selection the system re-
ters will be used to represent real numbers and functiomgains invariant in the simplex (that points remain in the unit
Vectors will also be denoted with a lower case letter, but wigimplex as trajectories are advanced through the replicator
be distinguished with an arrow above the letter (&)g. dynamics). Since we can increment the entire payoff matrix

Capital letters will be used to denote sets and matricd®/ @ constant amount without affecting the dynamics of the
Euclidean spaces will be denot&t, wheren is a positive game, we can assume that all our payoff matrices have the
integer and indicates the dimensionality of the space. Giveroperty that the payoffs are non-negative [7]. As aresult the
a set of connected points in Euclidean spatetheinterior  constants are not really necessary and we will not use them.
of is denoted asnt(X). The boundary ofX is denoted  One thing worth noting is that the two population model
bnd(X). operates as a dynamical system in a somewhat different type

Then dimensional unit simplex is denotel®. The sim- of space than a single population model. In both cases the
plex is the subset of Euclidean space such that all comgpace is invariant to the model, but while a single population
nents of vectors in that space are inclusively between 0 aR€@T model is confined to a single simplex, the two popu-
1, and the sum of all the components of a given vector equégon model moves about the cartesian produdinaf unit
one, A\" = {7:F € R, x; €[0,1]Vi=1...n,>  x; = simplexesA" x A™.



C. Multi-Population Symmetric Games But even assuming we had a strong notion of what our ul-

The defining characteristic of MPS games is that they ajg'ate external optimization objective was, is it the case that
symmetric with respect to their payoff matrices. For th‘aSh points (or other equilibria) correspond directly with

population games, this means they are symmetric when this notion? In most systems, there are multiple Nash equi-
BT libria. When this is so, is it clear that equilibria correspond-
These types of models are very useful for a variety of re%ﬁl‘-]’h,tO ”;n?ore optimal” objectives are more likely to be
sons. First, they closely resemble the particular class of & Ii\'lle h . . | belief
evolutionary algorithms we will be discussing. In addition, 'While these issues are true in a general sense, our belie

the symmetry assumptions allow for some subtle simplifics that it may be easier to resolve such questions for coop-

tion of the mathematics involved. For example, simple af'ative CEAs since they have a natural interpretation as an
gebraic expansion will show that the weighted average pRtmMIZer

off of the first population is the same as that of the secon‘g: Cooperative Coevolution

- Ay = ij - ATZ. These simplifications allow for some in- ) ) )
teresting observations to be made about dynamics. We willOne very simple form of cooperative coevolutionary algo-
discuss a few of these in a moment, after introducing a sontém (CCEA) has been used successfully to perform func-

assigned a specific argument for the function to represent,

and individuals in a given population must collaborate with

i = Ay (5) individuals from other populations in order to obtain a fitness
G = ATz (6) value _(the value of the objective _function).

A simple two argument function serves as an example.

T = w3 (qul q) (7) Suppose we would like to optimize the functigiiz, y) =
T Ay x? + 32 using cooperative coevolution. We could represent
J = u < w; ) ®) potentialz argument values in one population, and poten-
¢ z- Ay tial y argument values in a second population. We would
evolve the two populations separately (i.e.: they do not in-
Ill. M ODELING COOPERATIVE COEVOLUTION terbreed), but when it comes time to evaluate an individual

A. Coevolution and Optimization in the x population, we will need to use an individual from

they population in order to obtain a value from the objective
function. In fact, we will evaluate a given memberiofvith
verymember ofy (a collaborator), and take the average of
resulting fitness values (i.e. complete mixing). The same
rocess is true in reverse for thepopulation, with respect

In coevolutionary algorithms we are evaluatiimgerac-
tions between individualsot the individuals themselves.
As a result, the fitness of individuals is subjective in som
sense, since it will depend on the interactions formed, a
consequently the state of the current populations. With t .
ditional evolutionary algorithms, it is usually clear how 50 collaborations frone .

problem can be encoded such that meaningful results aréNe flgf:uf’ 9{”. this model Tor z:nalyssl f?r threhe_ rr?am rea-
possible. We can construct an objective function to Corﬁglrl‘s.seeﬁs, ':oIsea;?o?mxarr;rilir?oc?ﬁjn{oal{c'?: t\gsll(s:, Seg::‘())'rr]'é
pute fitness and use the limiting population state distriby-. y P W ptimization ' Y

It is very clear how to encode an optimization problem in

tions to indicate which genotype corresponds to the point i h that soluti o th ¢ 4 with
the domain of the objective function space. This is possib eich a way that solutions 1o fhe Systems correspond wi

with a coevolutionary algorithm too, except that the limitin heamr][gfgl retﬁults. Fmtally, we can use MPS game model to
distributions correspond witimteractionsand not objective aracterize these systems.

function domain values. In order to decode this to a meap;> Pt More about the second point should be discussed.
i a'?%ue encoding/decoding question is addressed by two proper-

ingful solution, we must have a pretty strong understandin: - . . .
tles: distinct populations and symmetry in the fithess mech-

of what the interactions themselves mean in the context Ot Th i v affords the alqorith ith
our objective function. For most coevolutionary algorithm hnlsr_n. i fis%mtn:ﬁ rltc properlyt_a oras “el agorlthm Wi
we have no such understanding. e simplicity that the two populations are "playing the same

In some sense, optimality of a CEA is best expressedt me I, th;‘.tﬁ'S: othluzmg\;A;he same flénctt'k?n (sve? th(f)ugh
terms of a type ohdaptive balancachieved in the system. ey play different roles). We can encode the objective func-

In the game—theoretic sense, this is generally expresse&'?r? right into the coIIab_orat_|on mech_anlsm, a_nd_ We can eas-
terms of Nash equilibrium. In fact, in the two populatio ly understand what objective domain value is indicated by

EGT model we've just defined (including MPS games), d he converged populations.

nami_ca!ly stable fi_xed points of the syster_n are also l_\la@w_ Modeling CCEAs with MPS Games

equilibria. Clearly if we have a formally defined dynamical ) i
systems model, we can begin to analytically address queslt Should be clear by now that a MPS game is a direct
tions of when and how (and if) these fixed points are reaché@f!@logy of a cooperative coevolutionary algorithm. Assum-



ing the number of distinct genotypes for each population is
finite, we can elicit a payofff matrix for the first population
by simply determining the objective function values at each 2
combination of genotypes with the opposing population’s
genotypes. Since the game is symmetric, the second pop-*
ulation uses the transpose of this matrix.

Such matrices are relatively easy to construct, given some *
objective function. For this article, we draw two examples
from a simple class of functions: Mk OF TWO QUADRAT-

0

ICS (farrg)- The equations below describe this function. o
quady(z,y) = ki —s1- [(fl —2)’ + (7 — y)2]
y -30 -30 «
quady(z,y) = ks — s [(@2— o) + (7 — y)’]
Fig. 2. 2D f> landscape
furgle,y) = max(quady, quady) 92 2bJ fandscap
This parameterized landscape defines a a class of max- TABLE |

imization problems with two peaks located at the points EXAMPLE 6 x 6 PAYOFF MATRIX FOR OUR f1 OF THEMAX OF TWO
(sﬁl, 71) and (572, 72) , respectively. The; ands, param- QUADRATICS LANDSCAPES THE DOMAINS FOR BOTHz AND y ARE
eters will be used to scale the two peaks, andithand ko (—30.0,30.0].

constants are used to translate them up or down. We cheses =585 58  100.02 110.82 112.98 106550
two landscapes from this family which have one global op- co 5 9020 10650 117.30 11946 112,98
timal peak, and one suboptimal local peak, as illustrated irh33.40 155.00 14780 11514 11730 110l82
Figure 1 and Figure 2. The parameter settings for landscap@so 40 191.00 183.80 147.80 10650 100l02

Ji arely = 200,k 120, ;1 = 0.1 andsa = 003, The | 176,60 198.20 191.00 15500 9020 8053
parameter setting fof; are the same exceptthat=12. | 15500 176.60 169.40 13340 68.60 5250

example, the payoff for thé” genotype from the: popula-

tion interacting with the"? genotype from theg population

in the above example is 198.20, which also happens to be the
global maximum of this payoff matrix.

IV. ANALYZING THE MODEL
A. Theoretical Analysis

From a theoretical perspective, there are two ways one can
pose questions about how EAs work. The first perspective
focuses on the dynamical behavior of an EA in the limit and
tries to identify fixed points to which populations converge
(if such exist), and understanding basic dynamical properties
of EAs near these points. The second perspective is more
behavior—oriented. It asks the question: what areas of the
space do trajectories traverse during the search. This case

In order to apply our MPS model, the intervais30,30] recognizes the pragmatics of how evolutionary algorithms
must be discretized into a finite number of “genotypes”. Faire actually used in the sense that solutions are obtained by
illustration purposes, if we discretize the interval into sixetaining the optimal point of the search space that trajecto-
evenly spaced sample points, the result i§ & 6 payoff riespass throughin our study so far, we focus primarily on
matrix in which the entries are simplly the function values ahe former viewpoint and try to address questions about the
the sampled points. Table I illustrates this for landscApe stability of fixed points and the relative sizes of their basins

In the game—theoretic framework, the genotypes from tlag¢ attraction; however, clearly EGT is a general framework
x population to determine which row is of the payoff matrixvhich can be used to address both perspectives.
will be used, and genotypes from thepopulation to deter-  Fortunately, work in EGT in general, and MPS games
mine which column of the payoff matrix will be used. Fowpecifically, has already addressed many of these questions

Fig. 1. 2D f; landscape



analytically. For example, anstrict Nash equilibria must ality of the spaces of the systems we are interested in our
contain only pure strategies (must be at the basis vectors, teey large, so even if we restrict ourselves to fixed points,
corners of the simplexes) [7]. This means that in the abseraed assume there are no cyclical or chaotic orbits, the space
of variational operators, in many cases we can expect thipotential attractors (in general) may be quite large.
populations in our systems to converge to homogeneity. Weln our case though, there are three things we have or can
also know, however, that mixed strategy equilibria are pode to make this a more tractable problem. First, we actually
sible on thebnd(A™ x A™) when the Nash points are notdo knowsome useful things about the systems we are study-
strict. This can happen when there are plateaus or ridgesng which help us. For instance, we know that as long as
the objective landscape, for instance. the maximum values on the rows and columns are unique,
Though not presented in this paper for reasons of size ahe only strict Nash equilibria are at the basis vectors. Sec-
scope, we have proved some useful properties about disciatd, knowing this, we construct our problem such that this
time MPS models [11]. For instance, fixed points at the bproperty is true of our payoff matrix. Finally, as an initial
sis vectors of the product simplexes which are associateglidation study method, we use an empirical method in or-
with strictly maximal values in the payoff matrix are stablegler to perform this measure.
while those associated with the minimum are purely unsta-In fact, the method we are using is calledaén gauge
ble. Those fixed points on the basis vectors associated witieasureand the idea is quite simple. An initial point is
values which are less than the maximum value of their caelected uniformly at random from the product simplexes,
umn or row in the matrix, but greater than the minimum ara trajectory through the space is computed using the initial
unstable, saddle points. point and the system model by iterating the system some
However, knowing the stability of a fixed point in a sysfarge number of times, then we look at the limiting behavior.
tem does not necessarily tell you whether it is more or lebBs our case all trajectories move to the basis vector, so we
likely to be reached by any arbitrary initial condition, unlesmaintain a histogram corresponding to these points. If the
more is known about the dynamical system ([7]). The quesajectory seems to have converged "very close” to a partic-
tion of howlikely is it that some initial point will move to a ular basis vector, we increment its value in the histogram.
particular fixed point is really a question of the size of basindle then repeat this process some large number of times.
of attraction in the system. While the condition "very close” is somewhat qualitative,
The basin of attraction of a given fixed point (or, indeedind ingeneralmay not be sufficient (e.g., unstable points
any limiting behavior) is the set of initial points that willwill push points that are "very close” away), wanbe more
eventually map to that point. The question posed in the lagsimfortable with this choice if an observed trajectory ap-
paragraph can now be rephrased: what is the measure gr@aches a known stable fixed point (which you will soon
fixed point’s basin of attraction relative to the other fixedee is true in this case). Trajectories were run for 5000 iter-
points to which trajectories go? ates, or until they were "very close” meaning within a delta
Our preliminary analysis shows that there is reason to baf-10~* in terms of variational distance. All iterates met this
lieve that the size of the basins of attraction of a fixed poicbndition.
indicated by a basis vector has more to do with relative localWe chose the two example functiong @nd f>) in order
column and row values, than how large the specific paydf illustrate how this technique can be used to help under-
value is at that point. In other words, this may mean thestand some of the dynamics of these systems. For these sim-
is reason to suggest that broad, suboptimal peaks will pple studies, we choose to use &x 8 sized payoff matrix,
trajectories away from taller, more narrow peaks. This israpresentationally equivalant to a 6 bit GA. As illustrated in
form of local convergence that has been recognized in CEf\gure 1, the first functionf;, has roughly the same domain
[4]. area under each quadratic peak, that is about 55% of the do-
The proofs and mathematical evidence for these and otlnegiin values achieve a maximum withad;, and about 45%
properties of these models are currently being refined faith quad,. The purpose of the second landscape is to show
publication [11]. However, this paper will provide an initialwhat happens when the peaks remain the same relative dif-
set of model validation studies which seek to measure tfexence in height, but the aresmdereach peak is changed.
relative sizes of the basins of attraction of payoff landscapEer f», less than 10% of the payoff entries are due to the
which have varying sized peaks as a means of illustrationquad; peak (see figure 2).
. ) The results for the first function are not surprising. We
B. Empirical Analysis chose 5000 different initial points for the system, and ev-

Measuring the sizes of the basins of attraction of all tfefy point mapped to the basis vector associated with the
various limiting behaviors of a dynamical system is far frorglobal peak. An alternate way of describing this is that,
easy. First of all, there is no guarantee that there is any adMden we choose an initial starting state for the population
lytical way to do so in general. Second, it is generally diffiat random, the model always indicated that a CCEA algo-
cult to definitivelyknowall the possible limiting behaviors, rithm would converge to homogeneity at the global maxi-
much less measure their basins. Moreover, the dimensigaum of first function. The second function is a more inter-



esting example. In this case, the exact same initial pointszer.
are used, but now only 48.2% of the initial points mapped to Our early formal analysis of CCEAs suggests that we can
the global peak, the remaining 52.8% converged to the locakpect stability from unique maximum values, but the condi-
quad; peak. The measure of the basins of attraction of dlbn for this stability is local with respect to the payoff matrix
the other basis vector fixed points was zero. columns and rows. However, we still do not know how likely
trajectories are to go to those stable points.
1 We believe that insight into the limit behavior of trajec-
09 i tories can be obtained from empirical analysis of the for-
o8 mal models. We introduce one such method (a rain gauge
technique) for getting a measure of the relative sizes of the
basins of attraction of simplex corner fixed points. Knowing
that trajectories move either to the global or local peak, we
constructed a graph of the variational distances intthed
i populations vectors. This graph shows that initial points
close to the global optimal go to that fixed point, but points
farther away typically do not. Thus, by demonstrating how
these methods can be used on two example landscapes, we
uncover the interesting fact that the discrete time model may
have local convergence issues.

These empirical methods give us hope that there are ana-
Iytical properties which may be found to help us understand
Fig. 3. MPS trajectories off,. Open circles represent initial points for SUCH issues. Our goal in the future is to use the formalism

trajectories converging to global maximum. Closed circles represedf MPS to better understand CCEAs by identifying the for-

initial points bound for smaller local maximum. mal properties which govern this behavior, and to discover

Getting insight into whether or not there are topologicz%pe roll_e varlartll_or;] (cj)perators p_Iay.hWe are a'$° cor}s_ldf_er!ng
properties governing the behaviors of the trajectories is d prmalisms which do notrequire the assumptions of infinite

ficult due to the high dimensionality of the space. In thgopula}tions af‘d complete mixing.. Finally, we are are intert
case of function two/s, it is our supposition that trajecto- ested in merging this research with our component analysis
Eeesearch on applied CCEAs. The result should be a clearer

ries starting closer to the global peak in the domain spact "
are drawn towards it, while those which start farther al@cture for how and when practitioners can apply coopera-

drawn to the suboptimal peak. One way to try to answdY€ coevolution.
this is to look at thevariational distanceof points in the tra-
jectories from the basis vector indicating the global pe
0, = max (abs(Z — Z,)) andd, = max (abs(y — 7)).
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