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Abstract— The task of understanding coevolutionary algorithms is
a very difficult one. These algorithms search landscapes which are in
some sense adaptive. As a result, the dynamical behaviors of coevolu-
tionary systems can frequently be even more complex than traditional
evolutionary algorithms (EAs). Moreover, traditional EA theory tells
us little about coevolutionary algorithms. One major question that has
yet to be clearly addressed is whether or not coevolutionary algorithms
are well–suited for optimization tasks. Although this question is equally
applicable to competitive, as well as cooperative approaches, answering
the question for cooperative coevolutionary algorithms is perhaps more
attainable.

Recently, evolutionary game theoretic (EGT) models have begun
to be used to help analyze the dynamical behaviors of coevolution-
ary algorithms. One type of EGT model which is already reasonably
well understood aremulti–population symmetric games. We believe these
games can be used to analytically model cooperative coevolutionary al-
gorithms. This paper introduces our analysis framework, explaining
how and why such models may be generated. It includes some exam-
ples illustrating specific theoretical and empirical analyses. We demon-
strate that using our framework, a better understanding for the degree
to which cooperative coevolutionary algorithms can be used for opti-
mization can be achieved.

I. I NTRODUCTION

In the past few years there has been an increase in interest
in coevolutionary algorithms (CEAs), i.e., evolutionary al-
gorithms (EAs) in which the fitness of individuals is not de-
termined in an independent fashion by invoking an external
fitness function, but rather the fitness of an individual is de-
termined by its interactions with other individuals in the evo-
lutionary system. Much of the work on CEAs has focused
on two kinds of interaction:competitivecoevolutionary sys-
tems andcooperativecoevolutionary systems. Competitive
CEAs are natural models for evolving objects such as game
playing programs for which it is difficult to write an external
fitness function, but quite simple to define fitness in terms of
competitive success against other programs in the evolving
population (e.g., [1]). Cooperative CEAs are natural mod-
els for evolving complex objects by decomposing them into
subassemblies that coevolve, and subassembly fitness is de-
termined by how well it works with the other subassemblies
in producing a complete object (e.g., [2]).

It is very clear from this work that the behavior of CEAs in

1This material has been reviewed by the CIA. That review neither con-
stitutes CIA authentication or information nor implies CIA endorsement of
the author’s views.

general is quite different from standard (non-coevolutionary)
EAs, and furthermore, competitive CEAs behave quite dif-
ferently than cooperative CEAs. This raises two important
questions: what body of EA theory can be used to help
us understand CEAs better and what kinds of problems are
CEAs best suited for? A key element in answering these
questions is a better understanding of the dynamics of CEAs
which are considerably more complex than standard (non-
coevolutionary) EAs, since the fitness landscape is itself
evolving over time. This means a CEA is in principle a much
more open-ended adaptive system [3] in the sense that it can
evolve entirely new fitness gradients over time[1].

As a consequence much of the initial work in theoretical
CEA analysis has focused on tools for modeling and ana-
lyzing CEA dynamics. One of the more promising recent
developments has been the use of evolutionary game the-
ory (EGT) to provide a dynamical systems analysis of CEAs
[4]. A dynamics systems analysis directly addresses the first
of the two questions raised earlier by providing a better un-
derstanding of CEA dynamics, but only indirectly addresses
questions such as how effective are CEAs at solving difficult
optimization problems.

In this paper we focus oncooperativeCEAs (CCEAs) and
present two interesting results. First we show how EGT can
be used quite naturally to model cooperative CEAs, even
though intuitively one might expect that EGT is better suited
for competitive CEA analysis. Second, because cooperative
CEAs have a more natural interpretation as solving an op-
timization problem, the EGT analysis also provides some
insight into the behavior of CCEAs as optimizers.

We begin with some background discussion regarding evo-
lutionary game theory, and introduce the concept ofmulti–
population symmetric games(MPS) [5], the subclass of EGT
models that will be used to model and analyze these kinds
of cooperative coevolutionary algorithms. We then describe
the particular CCEAs under study and show how MPS can
be used to model them. In section four we present our initial
MPS analysis, introduce the idea of usingrain gauge mea-
suresas a form of empirical model validation [6], and then
use this method to shed light of the behavior of a CCEA as an
optimizer on two simple functions. Finally, we will conclude
by discussing the impact of these results, both in terms of the



specifics of what is learned, as well as the general message
regarding the applicability of the MPS game framework.

II. EVOLUTIONARY GAME THEORY

EGT describes a set of dynamical systems models for
which modern dynamical systems theory can be used to
analyze evolutionary processes [5], [7], [8] and, as we will
see, coevolutionary algorithms fit very nicely into this
game–theoretic framework.

In evolutionary game theory, we are working with models
of populations of individuals who are interacting with one
another. Individuals repeatedly meet and receive some re-
ward or punishment for the experience (payoff), based on
how their genes tell them to ”play the game” (strategy). This
process, influenced by selection, continues and we (the mod-
elers) observe the change in the population(s) that result.
Traditionally standard, fitness proportional selection is as-
sumed and is used in this paper as well..

While single population models are common in EGT, this
paper will be focusing entirely on two population models, in
which individuals interact only with members of the other
population, not their own. Further, though many kinds of
interactions are possible, we will assumecomplete mixing,
meaning that during the evaluation phase of the algorithm,
individuals in one population are assumed to have interacted
with all members of the alternate population in pair–wise
collaborations, and vice–versa.

This research also assumes that populations are infinite in
size, and we deal with expected fitness based on distribu-
tions across the finite number of pure strategies (genotypes).
Additionally, we will concern ourselves with discrete time
(generational) models.

Finally, although EGT models typically do not include
variation operators, it has been recently noted that model-
ing variation is possible [4]. We are currently studying for-
malisms that include variational operators but will not dis-
cuss variation in this paper.

A. Notation

Before introducing the mathematical model, some basic
notional conventions must be established. Lower case let-
ters will be used to represent real numbers and functions.
Vectors will also be denoted with a lower case letter, but will
be distinguished with an arrow above the letter (e.g.~x).

Capital letters will be used to denote sets and matrices.
Euclidean spaces will be denoted<n, wheren is a positive
integer and indicates the dimensionality of the space. Given
a set of connected points in Euclidean space,X, theinterior
of is denoted asint(X). The boundary ofX is denoted
bnd(X).

Then dimensional unit simplex is denoted∆n. The sim-
plex is the subset of Euclidean space such that all compo-
nents of vectors in that space are inclusively between 0 and
1, and the sum of all the components of a given vector equals
one, (∆n = {~x : ~x ∈ <n, xi ∈ [0, 1]∀i = 1 . . . n,

∑n
i xi =

1}). The cartesian product of two simplexes is denoted∆n×
∆m.

B. Two Population Evolutionary Game Models

Virtually any EA can be considered a dynamical system
[9]. By assuming that populations consist of an infinite num-
ber of individuals, but a finite number ofn distinct possible
genotypes, one can represent the state of a population at any
given time by a vector of real values each element of which
represents the fraction of each genotype in the population.
Since such vectors must sum to one, they are all in the unit
simplex (~x ∈ ∆n). Hence, changes in the state of a popula-
tion over time are modeled as dynamical system trajectories
in the simplex.

In our case, the system that defines the dynamics of a
CCEA is developed using anN population evolutionary
game theoretic model. To keep things simple in this pa-
per we show how a two population model is constructed.
The key element is understanding how replication is han-
dled. The equations which follow show the two population,
discrete time version of replicator dynamics.

~u = A~y (1)

~w = B~x (2)

x′i = xi

( ui

~x · ~u

)
(3)

y′i = yi

(
wi

~y · ~w

)
(4)

Where~x ′ and~y ′ represent the new population distribu-
tions for the next generation.A and B describe the pay-
offs associated with each pair of possible interactions. In
the above system,A describes the payoffs that the first pop-
ulation, ~x, receives when it interacts with members of the
second population,~y, andB describes the reverse.

Frequently an additive constant appears in the first equa-
tion, ~u = A~y + ωo, whereωo = 1 − min (A), as well as
a similar constant for the second equation. These constants
are used to make sure elements of~u and~w are non-negative.
This is so that under proportional selection the system re-
mains invariant in the simplex (that points remain in the unit
simplex as trajectories are advanced through the replicator
dynamics). Since we can increment the entire payoff matrix
by a constant amount without affecting the dynamics of the
game, we can assume that all our payoff matrices have the
property that the payoffs are non-negative [7]. As a result the
constants are not really necessary and we will not use them.

One thing worth noting is that the two population model
operates as a dynamical system in a somewhat different type
of space than a single population model. In both cases the
space is invariant to the model, but while a single population
EGT model is confined to a single simplex, the two popu-
lation model moves about the cartesian product oftwo unit
simplexes,∆n ×∆m.



C. Multi–Population Symmetric Games

The defining characteristic of MPS games is that they are
symmetric with respect to their payoff matrices. For two
population games, this means they are symmetric whenA =
BT .

These types of models are very useful for a variety of rea-
sons. First, they closely resemble the particular class of co-
evolutionary algorithms we will be discussing. In addition,
the symmetry assumptions allow for some subtle simplifica-
tion of the mathematics involved. For example, simple al-
gebraic expansion will show that the weighted average pay-
off of the first population is the same as that of the second,
~x · A~y = ~y · AT ~x. These simplifications allow for some in-
teresting observations to be made about dynamics. We will
discuss a few of these in a moment, after introducing a some-
what simpler form of the replicator equations.

~u = A~y (5)

~w = AT ~x (6)

x′i = xi

(
ui

~x ·A~y

)
(7)

y′i = yi

(
wi

~x ·A~y

)
(8)

III. M ODELING COOPERATIVECOEVOLUTION

A. Coevolution and Optimization

In coevolutionary algorithms we are evaluatinginterac-
tions between individuals, not the individuals themselves.
As a result, the fitness of individuals is subjective in some
sense, since it will depend on the interactions formed, and
consequently the state of the current populations. With tra-
ditional evolutionary algorithms, it is usually clear how a
problem can be encoded such that meaningful results are
possible. We can construct an objective function to com-
pute fitness and use the limiting population state distribu-
tions to indicate which genotype corresponds to the point in
the domain of the objective function space. This is possible
with a coevolutionary algorithm too, except that the limiting
distributions correspond withinteractionsand not objective
function domain values. In order to decode this to a mean-
ingful solution, we must have a pretty strong understanding
of what the interactions themselves mean in the context of
our objective function. For most coevolutionary algorithms,
we have no such understanding.

In some sense, optimality of a CEA is best expressed in
terms of a type ofadaptive balanceachieved in the system.
In the game–theoretic sense, this is generally expressed in
terms of Nash equilibrium. In fact, in the two population
EGT model we’ve just defined (including MPS games), dy-
namically stable fixed points of the system are also Nash
equilibria. Clearly if we have a formally defined dynamical
systems model, we can begin to analytically address ques-
tions of when and how (and if) these fixed points are reached.

But even assuming we had a strong notion of what our ul-
timate external optimization objective was, is it the case that
Nash points (or other equilibria) correspond directly with
this notion? In most systems, there are multiple Nash equi-
libria. When this is so, is it clear that equilibria correspond-
ing to ”more optimal” objectives are more likely to be
achieved?

While these issues are true in a general sense, our belief
is that it may be easier to resolve such questions for coop-
erative CEAs since they have a natural interpretation as an
optimizer.

B. Cooperative Coevolution

One very simple form of cooperative coevolutionary algo-
rithm (CCEA) has been used successfully to perform func-
tion optimization [10]. In this approach, each population is
assigned a specific argument for the function to represent,
and individuals in a given population must collaborate with
individuals from other populations in order to obtain a fitness
value (the value of the objective function).

A simple two argument function serves as an example.
Suppose we would like to optimize the functionf(x, y) =
x2 + y2 using cooperative coevolution. We could represent
potentialx argument values in one population, and poten-
tial y argument values in a second population. We would
evolve the two populations separately (i.e.: they do not in-
terbreed), but when it comes time to evaluate an individual
in thex population, we will need to use an individual from
they population in order to obtain a value from the objective
function. In fact, we will evaluate a given member ofx with
everymember ofy (a collaborator), and take the average of
the resulting fitness values (i.e. complete mixing). The same
process is true in reverse for they population, with respect
to collaborations fromx .

We focus on this model for analysis for three main rea-
sons. First, it is an example of coevolution which empiri-
cally seems to perform well on optimization tasks. Second,
it is very clear how to encode an optimization problem in
such a way that solutions to the systems correspond with
meaningful results. Finally, we can use MPS game model to
characterize these systems.

A bit more about the second point should be discussed.
The encoding/decoding question is addressed by two proper-
ties: distinct populations and symmetry in the fitness mech-
anism. The symmetric property affords the algorithm with
the simplicity that the two populations are ”playing the same
game”, that is: optimizing the same function (even though
they play different roles). We can encode the objective func-
tion right into the collaboration mechanism, and we can eas-
ily understand what objective domain value is indicated by
the converged populations.

C. Modeling CCEAs with MPS Games

It should be clear by now that a MPS game is a direct
analogy of a cooperative coevolutionary algorithm. Assum-



ing the number of distinct genotypes for each population is
finite, we can elicit a payofff matrix for the first population
by simply determining the objective function values at each
combination of genotypes with the opposing population’s
genotypes. Since the game is symmetric, the second pop-
ulation uses the transpose of this matrix.

Such matrices are relatively easy to construct, given some
objective function. For this article, we draw two examples
from a simple class of functions: MAX OF TWO QUADRAT-
ICS (fMTQ). The equations below describe this function.

quad1(x, y) = k1 − s1 ·
[
(x̄1 − x)2 + (ȳ1 − y)2

]
quad2(x, y) = k2 − s2 ·

[
(x̄2 − x)2 + (ȳ2 − y)2

]
fMTQ(x, y) = max (quad1, quad2)

This parameterized landscape defines a a class of max-
imization problems with two peaks located at the points
(x̄1, ȳ1) and(x̄2, ȳ2) , respectively. Thes1 ands2 param-
eters will be used to scale the two peaks, and thek1 andk2

constants are used to translate them up or down. We chose
two landscapes from this family which have one global op-
timal peak, and one suboptimal local peak, as illustrated in
Figure 1 and Figure 2. The parameter settings for landscape
f1 arek1 = 200, k2 = 120, s1 = 0.1, ands2 = 0.03. The
parameter setting forf2 are the same except thats1 = 1.2.
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Fig. 1. 2Df1 landscape

In order to apply our MPS model, the intervals[−30, 30]
must be discretized into a finite number of “genotypes”. For
illustration purposes, if we discretize the interval into six
evenly spaced sample points, the result is a6 × 6 payoff
matrix in which the entries are simplly the function values at
the sampled points. Table I illustrates this for landscapef1.

In the game–theoretic framework, the genotypes from the
x population to determine which row is of the payoff matrix
will be used, and genotypes from they population to deter-
mine which column of the payoff matrix will be used. For
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Fig. 2. 2Df2 landscape

TABLE I

EXAMPLE 6× 6 PAYOFF MATRIX FOR OURf1 OF THE MAX OF TWO

QUADRATICS LANDSCAPES. THE DOMAINS FOR BOTHx AND y ARE

[−30.0, 30.0].

52.50 80.58 100.02 110.82 112.98 106.50
68.60 90.20 106.50 117.30 119.46 112.98
133.40 155.00 147.80 115.14 117.30 110.82
169.40 191.00 183.80 147.80 106.50 100.02
176.60 198.20 191.00 155.00 90.20 80.58
155.00 176.60 169.40 133.40 68.60 52.50

example, the payoff for the4th genotype from thex popula-
tion interacting with the2nd genotype from they population
in the above example is 198.20, which also happens to be the
global maximum of this payoff matrix.

IV. A NALYZING THE MODEL

A. Theoretical Analysis

From a theoretical perspective, there are two ways one can
pose questions about how EAs work. The first perspective
focuses on the dynamical behavior of an EA in the limit and
tries to identify fixed points to which populations converge
(if such exist), and understanding basic dynamical properties
of EAs near these points. The second perspective is more
behavior–oriented. It asks the question: what areas of the
space do trajectories traverse during the search. This case
recognizes the pragmatics of how evolutionary algorithms
are actually used in the sense that solutions are obtained by
retaining the optimal point of the search space that trajecto-
riespass through. In our study so far, we focus primarily on
the former viewpoint and try to address questions about the
stability of fixed points and the relative sizes of their basins
of attraction; however, clearly EGT is a general framework
which can be used to address both perspectives.

Fortunately, work in EGT in general, and MPS games
specifically, has already addressed many of these questions



analytically. For example, anystrict Nash equilibria must
contain only pure strategies (must be at the basis vectors, the
corners of the simplexes) [7]. This means that in the absence
of variational operators, in many cases we can expect the
populations in our systems to converge to homogeneity. We
also know, however, that mixed strategy equilibria are pos-
sible on thebnd(∆n × ∆m) when the Nash points are not
strict. This can happen when there are plateaus or ridges in
the objective landscape, for instance.

Though not presented in this paper for reasons of size and
scope, we have proved some useful properties about discrete
time MPS models [11]. For instance, fixed points at the ba-
sis vectors of the product simplexes which are associated
with strictly maximal values in the payoff matrix are stable,
while those associated with the minimum are purely unsta-
ble. Those fixed points on the basis vectors associated with
values which are less than the maximum value of their col-
umn or row in the matrix, but greater than the minimum are
unstable, saddle points.

However, knowing the stability of a fixed point in a sys-
tem does not necessarily tell you whether it is more or less
likely to be reached by any arbitrary initial condition, unless
more is known about the dynamical system ( [7]). The ques-
tion of how likely is it that some initial point will move to a
particular fixed point is really a question of the size of basins
of attraction in the system.

The basin of attraction of a given fixed point (or, indeed,
any limiting behavior) is the set of initial points that will
eventually map to that point. The question posed in the last
paragraph can now be rephrased: what is the measure of a
fixed point’s basin of attraction relative to the other fixed
points to which trajectories go?

Our preliminary analysis shows that there is reason to be-
lieve that the size of the basins of attraction of a fixed point
indicated by a basis vector has more to do with relative local
column and row values, than how large the specific payoff
value is at that point. In other words, this may mean there
is reason to suggest that broad, suboptimal peaks will pull
trajectories away from taller, more narrow peaks. This is a
form of local convergence that has been recognized in CEAs
[4].

The proofs and mathematical evidence for these and other
properties of these models are currently being refined for
publication [11]. However, this paper will provide an initial
set of model validation studies which seek to measure the
relative sizes of the basins of attraction of payoff landscapes
which have varying sized peaks as a means of illustration.

B. Empirical Analysis

Measuring the sizes of the basins of attraction of all the
various limiting behaviors of a dynamical system is far from
easy. First of all, there is no guarantee that there is any ana-
lytical way to do so in general. Second, it is generally diffi-
cult to definitivelyknowall the possible limiting behaviors,
much less measure their basins. Moreover, the dimension-

ality of the spaces of the systems we are interested in our
very large, so even if we restrict ourselves to fixed points,
and assume there are no cyclical or chaotic orbits, the space
of potential attractors (in general) may be quite large.

In our case though, there are three things we have or can
do to make this a more tractable problem. First, we actually
do knowsome useful things about the systems we are study-
ing which help us. For instance, we know that as long as
the maximum values on the rows and columns are unique,
the only strict Nash equilibria are at the basis vectors. Sec-
ond, knowing this, we construct our problem such that this
property is true of our payoff matrix. Finally, as an initial
validation study method, we use an empirical method in or-
der to perform this measure.

In fact, the method we are using is called arain gauge
measureand the idea is quite simple. An initial point is
selected uniformly at random from the product simplexes,
a trajectory through the space is computed using the initial
point and the system model by iterating the system some
large number of times, then we look at the limiting behavior.
In our case all trajectories move to the basis vector, so we
maintain a histogram corresponding to these points. If the
trajectory seems to have converged ”very close” to a partic-
ular basis vector, we increment its value in the histogram.
We then repeat this process some large number of times.

While the condition ”very close” is somewhat qualitative,
and in generalmay not be sufficient (e.g., unstable points
will push points that are ”very close” away), wecanbe more
comfortable with this choice if an observed trajectory ap-
proaches a known stable fixed point (which you will soon
see is true in this case). Trajectories were run for 5000 iter-
ates, or until they were ”very close” meaning within a delta
of 10−4 in terms of variational distance. All iterates met this
condition.

We chose the two example functions (f1 andf2) in order
to illustrate how this technique can be used to help under-
stand some of the dynamics of these systems. For these sim-
ple studies, we choose to use an8 × 8 sized payoff matrix,
representationally equivalant to a 6 bit GA. As illustrated in
figure 1, the first function,f1, has roughly the same domain
area under each quadratic peak, that is about 55% of the do-
main values achieve a maximum withquad1, and about 45%
with quad2. The purpose of the second landscape is to show
what happens when the peaks remain the same relative dif-
ference in height, but the areaundereach peak is changed.
For f2, less than 10% of the payoff entries are due to the
quad1 peak (see figure 2).

The results for the first function are not surprising. We
chose 5000 different initial points for the system, and ev-
ery point mapped to the basis vector associated with the
global peak. An alternate way of describing this is that,
when we choose an initial starting state for the population
at random, the model always indicated that a CCEA algo-
rithm would converge to homogeneity at the global maxi-
mum of first function. The second function is a more inter-



esting example. In this case, the exact same initial points
are used, but now only 48.2% of the initial points mapped to
the global peak, the remaining 52.8% converged to the local,
quadl peak. The measure of the basins of attraction of all
the other basis vector fixed points was zero.
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Fig. 3. MPS trajectories onf2. Open circles represent initial points for
trajectories converging to global maximum. Closed circles represent
initial points bound for smaller local maximum.

Getting insight into whether or not there are topological
properties governing the behaviors of the trajectories is dif-
ficult due to the high dimensionality of the space. In the
case of function two,f2, it is our supposition that trajecto-
ries starting closer to the global peak in the domain space
are drawn towards it, while those which start farther are
drawn to the suboptimal peak. One way to try to answer
this is to look at thevariational distanceof points in the tra-
jectories from the basis vector indicating the global peak,
δx = max (abs(~x− ~xg)) and δy = max (abs(~y − ~yg)).
Figure 3 illustrates this forf2. Here it seems that some min-
imal amount of initial probability in the components asso-
ciated with the global peak is necessary to converge to the
global optimum. This confirms our understanding that cu-
mulative payoff values local to some suboptimal maxima can
distract trajectories from finding the global peak when they
are sufficiently large.

V. CONCLUSIONS

We believe EGT will help us understand the complicated
dynamics of coevolution, and in particular address specific
questions about how and when they can be used best. In
order to illustrate this point, we have introduced a framework
for formal analysis of cooperative coevolutionary algorithms
using MPS games from evolutionary game theory.

We focused on cooperative coevolutionary function opti-
mizers to show how one might begin to address questions
about how well CEAs perform on optimization tasks since
CCEAs have a natural interpretation as an optimizer. In par-
ticular, we showed how one can use MPS games to obtain
a more formal understanding of the behavior of CCEA opti-

mizer.
Our early formal analysis of CCEAs suggests that we can

expect stability from unique maximum values, but the condi-
tion for this stability is local with respect to the payoff matrix
columns and rows. However, we still do not know how likely
trajectories are to go to those stable points.

We believe that insight into the limit behavior of trajec-
tories can be obtained from empirical analysis of the for-
mal models. We introduce one such method (a rain gauge
technique) for getting a measure of the relative sizes of the
basins of attraction of simplex corner fixed points. Knowing
that trajectories move either to the global or local peak, we
constructed a graph of the variational distances in the~x and
~y populations vectors. This graph shows that initial points
close to the global optimal go to that fixed point, but points
farther away typically do not. Thus, by demonstrating how
these methods can be used on two example landscapes, we
uncover the interesting fact that the discrete time model may
have local convergence issues.

These empirical methods give us hope that there are ana-
lytical properties which may be found to help us understand
such issues. Our goal in the future is to use the formalism
of MPS to better understand CCEAs by identifying the for-
mal properties which govern this behavior, and to discover
the role variation operators play. We are also considering
formalisms which do not require the assumptions of infinite
populations and complete mixing. Finally, we are are inter-
ested in merging this research with our component analysis
research on applied CCEAs. The result should be a clearer
picture for how and when practitioners can apply coopera-
tive coevolution.
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