
Building Redundancy in Multi-agent Systems Using Probabilistic Action

Annie S. Wu, R. Paul Wiegand, and Ramya Pradhan
University of Central Florida

Orlando, FL 32816
aswu@cs.ucf.edu, wiegand@ist.ucf.edu, ramya.pradhan@knights.ucf.edu

Abstract

In this paper, we examine the effects of probabilistic re-
sponse on a task allocation problem for a decentralized
multi-agent system (MAS) and how such a mechanism
may be used to tune the level of redundancy in an MAS.
Redundancy refers to a back up pool of agents, beyond
the necessary number required to act on a task, that have
experience on that task. We present a formal analysis of
a response threshold based system in which agents act
probabilistically and show that we can estimate the re-
sponse probability value needed to ensure that a given
number of agents will act and that we can estimate the
response probability value needed to achieve a given
level of redundancy in the system. We perform an em-
pirical study using an agent-based simulation to verify
expectations from the formal analysis.

Introduction
In this paper, we study the use of probabilistic response
in a decentralized multi-agent system (MAS) and examine
how such a mechanism may be used to adjust and adapt the
amount of redundancy in an MAS. One of the expected ad-
vantages of multi-agent systems over single agent systems
is robustness due to redundancy. If one agent in an MAS is
unable to perform its task, other agents may be available to
fill in. For tasks where experience improves performance,
having a “backup pool” of agents with some experience on
a task can mitigate a significant drop in performance should
the primary actor or actors, those agents that are primarily
responsible for a task, become unexpectedly unavailable or
lost. Thus, on tasks where experience affects performance,
an MAS will need to balance having the most experienced
agents perform a task efficiently with giving inexperienced
and, consequently, less efficient agents a chance to gain ex-
perience on the task. For example, in a search and rescue
mission, experienced agents are likely to be more effective
at finding and extracting victims than inexperienced agents;
however, inexperienced agents need to be given the opportu-
nity to perform the task in order to gain experience and im-
prove their performance on the task. We show that a proba-
bilistic response mechanism may be used to dynamically as-

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

semble and maintain a backup pool of partially experienced
agents in a decentralized system.

In centralized systems, forming and maintaining a backup
pool of agents for a given task is relatively straightforward.
Given the desired size of the backup pool, a central con-
troller can explicitly balance the exploitation of experienced
agents with the training of backup members. An example
strategy would be to occassionally assign the task to backup
members to build their experience while concentrating most
assignments on primary actors to maintain performance. In
addition, when primary actors for a task are lost, backup
members can be promoted, and new backup members are
trained from as yet inexperienced agents. Centralized sys-
tems, however, are vulnerable due to their single point of
failure and often do not scale well as the team size increases.

In decentralized systems where agents act independently
and there is no central controller, ensuring that the appropri-
ate agents act (primary actors most of the time and backup
agents occassionally to gain experience) is more challeng-
ing. Although it may be possible for all agents to negoti-
ate and come to a consensus on who takes what task, such
methods that require non-trivial communication and com-
putation do not scale well. If reliable communication and
global knowledge are not guaranteed, then agents must de-
cide when to take on a task with little to no information about
what their team members are doing.

A common approach to task allocation in decentralized
MAS is the response threshold approach. In this approach,
agents have a threshold for each task and consider acting
on a task when the task stimulus exceeds their threshold
for the task. If agents have different thresholds for the same
task, those with lower thresholds act sooner than those with
higher thresholds, and those with higher thresholds may not
need to act at all if the earlier actors sufficiently address the
task’s needs. As a result, some coordination among agents
is possible even when there is little or no communication
between agents.

The response threshold model was originally proposed
as a mathematical model of division of labor in social in-
sect societies (Bonabeau, Theraulaz, and Deneubourg 1996;
1998). A key element of the biological model is that agents’
responses to task stimuli exceeding their thresholds are
probabilistic rather than deterministic. A probabilistic re-
sponse means that an agent is not guaranteed to act when

a task stimulus exceeds its threshold. This is thought to in-
crease the robustness of insect societies by allowing agents
with higher thresholds for a task occassional opportunities
to act and gain experience on the task, in effect forming a
backup pool (Weidenm̈uller 2004).

The response threshold approach has been used in mul-
tiple computational domains involving coordination of de-
centralized MAS (Agassounon and Martinoli 2002; Cam-
pos et al. 2000; Krieger and Billeter 2000; Nouyan 2002;
Parker 1998; Price and Tino 2004). Both deterministic and
probabilistic approaches have been shown to be capable of
decentralized task allocation. To our knowledge, however,
there is not yet a thorough study examining the effects of
probabilistic action on building a back-up pool of experi-
enced agents — and, in particular, no formal analysis of such
a process has been conducted.

We show that, for decentralized MAS that use response
thresholds to determine task allocation among agents, a sim-
ple technique based on probabilistic action can be used to
generate a backup pool of agents with some experience for
a task while keeping most of the work on the most experi-
enced agents to maintain performance. Probabilistic action
is implemented via a response probability, which is defined
to be the probability that an agent will act on a task when
its action threshold is reached. We present a formal analysis
of this response probability model and show how it affects
the ability of an MAS to satisfy a task’s needs and to form a
backup pool. In addition, we show that the response proba-
bility may be varied to adjust the size of the backup pool.

Our model
Our model focuses on a task allocation problem with a single
task that needs to be addressed. Given an MAS consisting of
n agents, each time the task occurs (needs to be addressed),
x : x < n agents from the MAS must respond in order to
satisfy the task. Since our MAS is decentralized, each agent
independently decides whether or not to respond to a task.
If x agents act in response to a task, we are successful in
forming a response team for the task. If fewer than x agents
act on a task, we do not have enough actors to meet the task’s
needs and we are unsuccessful in forming a response team.

Our MAS is a response threshold system in which each
agent has a threshold value for each task. If we order the
agents by increasing task threshold from left to right, those
agents at the left end of the line are the first to act and
have more chances to gain experience on the task, and those
agents at the right end of the line are the last to act and have
few to no chances to gain experience on the task.

To make the model probabilistic, we introduce a response
probability, s : 0.0 ≤ s ≤ 1.0, that affects whether or not an
agent will act once its threshold has been met. If an agent’s
threshold is met before the task is satisfied (before x agents
have responded to the task), that agent becomes a candidate
and is offered an opportunity to act. A candidate chooses to
act with probability s. If the candidate does choose to act,
it becomes an actor, and the number of responders to the
task increases by one; if it does not choose to act, then the
next agent in the ordering becomes a candidate. Thus, the
response probability is the probability that a candidate will

become an actor. As we move from left to right in the or-
dered list of agents (moving from fastest to slowest respon-
der), the addition of the response probability s means that
the x responders that satisfy the task may not always be the
left most x agents. If some of those agents probabilistically
choose not to act, then agents beyond the first x can receive
an opportunity to act and gain experience.

Figure 1 illustrates the effects of s. We define a trial to be
one instance in which a task requires action from the MAS.
When s = 1.0, the system is deterministic and only the first
x agents gain experience on the task regardless of the num-
ber of trials. When 0.0 < s < 1.0, agents act probabilisti-
cally. While only a maximum of x agents gain experience
in each trial (though not necessarily the first x agents), over
multiple trials, we expect more than the first x agents to gain
experience on the task.

Because x actors are required to satisfy the task, the first
x agents in the ordered list will always become candidates,
which means that they will get an opportunity to gain ex-
perience for every instance of the task. Agents beyond the
first x in the ordering will only become candidates if a full
response team has not been achieved by the time their turn
comes up. The pool is the set of agents beyond the first x
agents that have gained experience over multiple trials. At
high s values, we expect the pool size to be close to zero
because most of the first x agents have a high probability of
choosing to act. As the s value decreases, the pool size will
increase because the first x agents, as well as agents beyond
the first x agents, have a decreasing probability of choosing
to act. As we approach s ≤ x/n, however, decreasing s will
also increase the chance that the task will not be satisfied be-
cause it will be increasingly likely that fewer than x out of
all n possible agents choose to act.

Thus, we see that s affects both the ability of an MAS to
form a response team and the level of redundancy that can
be achieved by the MAS over multiple trials. The analysis
that follows seeks to find guidance on how to set s for an
MAS, depending on whether the goals are to successfully
form a response team, to maximize the number of agents that
gain experience on the task, or to meet specific redundancy
requirements.

Analysis
Our analysis examines two aspects of the response proba-
bility, s. First, how does s affect the ability of an MAS to
successfully form a response team. Second, how does s af-
fect the ability of an MAS to build and maintain redundancy.

The reader will recall traditional asymptotic notation. We
use O (g(n)) to denote the set of functions that asymptot-
ically bound g(n) from above and Ω (g(n)) to denote the
set of functions that asymptotically bound g(n) from below.
Formally:

O (g(n)) =

{
f(n) : there exist positive constants c
and n0 such that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0

}

Ω (g(n)) =

{
f(n) : there exist positive constants c
and n0 such that 0 ≤ cg(n) ≤ f(n)
for all n ≥ n0

}

Figure 1: Example of the impact of response probability s. The total number of agents is n = 8 and the number of agents
required to perform the task is x = 3. The number of trials is three. When s = 1.0, only the first three agents become
candidates and then actors. No additional actors gain experience so there is no back up pool. When 0.0 < s < 1.0, the first
three agents always become candidates and stochastically may or may not become actors based on s. In this example, s = 0.5
and a coin toss was used to determine if a candidate become an actor. Over three trials, the total number of agents that gain
experience is seven, giving a back up pool of four extra agents with experience.

For those less familiar with this notation, it may be helpful
for our discussion to point out that the class of functions
e−Ω(g(n)) is the set of functions that drop toward zero as an
exponential function of g(n) — or faster.

Forming a team
Recall that an MAS is only successful in responding to a
task if it can form a response team, and a team is formed
when x agents choose to work on the task. While we can
ensure that all agents in an MAS will gain experience on
a task over multiple task instances by simply setting s to
a low value, having an MAS full of “experienced” agents
is pointless if the MAS is unable to form a full response
team. As a result, the first question that we would like to
ask is, given that we have n agents and a task that requires
x : x < n agents, can we determine what s values will allow
the MAS to successfully form a reponse team?

We begin by traversing all n agents and marking each
agent with probability s. This mark indicates the probability
that an agent will choose to act should it become a candidate.
Let M be a random variable specifying the total number of
marked agents, regardless of whether the agents participate
in the team or not.

Lemma 1 A single trial of the task allocation process will
result in M ≤ x− 1 with probability 1− e−Ω(n) when s <
x−1
en . It will result in M ≥ x with probability 1 − e−Ω(n)

when s > x
n .

Proof: The expected number of marked agents is n · s,
E {M} = ns, since there are n agents to be marked, and
each is marked with independent probability s. Let

δ =
x− 1

ns
− 1

and note that

(1 + δ)ns =

(
1 +

x− 1

ns
− 1

)
ns = x− 1

We use Chernoff inequality to bound the probability that
there are more than x− 1 marks.

Pr {M > x− 1} = Pr {M > (1 + δ)E {M}}

<

[
eδ

(1 + δ)1+δ

]E{M}

=

[
e

x−1
ns −1

(x−1
ns)

x−1
ns

]ns

=
1

ens

[(
ens

x− 1

) x−1
ns

]ns

If x − 1 > ens, this converges to 0 exponentially fast as n
grows. Thus s < x−1

en implies Pr {M < x} = 1− e−Ω(n).

Now consider δ = 1− x
ns and note that

(1− δ)ns =
(

1− 1 +
x

ns

)
ns = x

We use Chernoff inequality to bound the probability that
there are fewer than x marks.

Pr {M < x} = Pr {M < (1− δ)E {M}}

< eδ
2E{M}/2

= e(1− x
ns)

2
ns/2

= e−
ns
2 (ns−x)2

If x < ns, this converges to 0 exponentially fast as n grows.
Thus s > x

n implies Pr {M ≥ x} = 1− e−Ω(n). �

Theorem 1 With high probability, as n grows a complete
team will almost surely be formed when s > x

n and will
almost surely not be formed when s < x−1

en .

Proof: If there are fewer than x marks over all n agents,
a complete team of x agents will not be formed, and a

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Te
am

 fo
rm

at
io

n
%

s

n = 100, x = 20

s1s2

Figure 2: Comparison of calculated values for s1 and s2

with empirical data on the percentage of trials in a run in
which a team is formed, averaged over 20 runs, as s varies
from 0.0 to 1.0. s1 = 0.2 is the response probability value
above which a team is likely to be formed in a single trial and
s2 ≈ 0.07 is the response probability value below which a
team is unlikely to be formed in a single trial.

complete team can only be formed if there are x or more
marks. Noting this, the conclusion follows from Lemma 1. �

Asymptotic analysis gives us bounds for the response
probability as n grows; however, it is constructive to see how
this practically relates to a specific scenario. Consider a sys-
tem with n = 100 agents and a task that requires x = 20
agents. If s1 equals the value of s for which a team is likely
to be formed in a single trial, then

s1 >
x

n
=

20

100
= 0.2

If s2 equals the value of s for which a team is almost surely
not be formed in a single trial, then

s2 <
x− 1

en
=

19

2.71828183 ∗ 100
= 0.069897 ≈ 0.07

Figures 2 and 3 compare the predicted values for s1 and s2

with team formation data from an agent-based simulation.
In the simulation, each agent has a threshold for the task;
lower thresholds indicate quicker response. Recall that one
trial is defined to be one instance of the task. In each trial,
agents, in order of increasing thresholds, decide whether or
not to act with a probability s. The trial ends when either a
response team is formed or when all agents have been of-
fered the opportunity to act on the task. Each run of the sim-
ulation consists of 100 trials and we record the number of
trials out of 100 in which a team is formed.

Figure 2 shows data from a simulation consisting of 100
agents (n = 100) and a task that requires 20 agents (x =
20). Figure 3 shows data from a simulation consisting of 500
agents (n = 500) and a task that requires 300 agents (x =
300). Simulations using other n and x values yield similar
results. The x-axis in both figures plots the s values where
0.01 ≤ s ≤ 1.0. The y-axis shows the percentage of trials

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Te
am

 fo
rm

at
io

n
%

s

n = 500, x = 300

s1s2

Figure 3: Comparison of calculated values for s1 and s2

with empirical data on the percentage of trials in a run in
which a team is formed, averaged over 20 runs, as s varies
from 0.0 to 1.0. s1 = 0.6 is the response probability value
above which a team is likely to be formed in a single trial and
s2 ≈ 0.22 is the response probability value below which a
team is unlikely to be formed in a single trial.

in a run in which a team is formed, averaged over 20 runs.
The s1 and s2 values calculated above are indicated by two
vertical lines. In both examples, the calculated value for s1,
which indicates the threshold above which a team is likely
to be formed in a single trial, tends to fall on s values where
the team formation percentage is fifty percent or above. The
calculated value for s2, which indicates the threshold below
which a team is unlikely to be formed in a single trial, falls
on s values where where team formation percentage is zero
percent. It is likely that the x

n bound is tight and that x−1
en is

overly cautious.

Building and maintaining redundancy
Redundancy is achieved when there is a pool of agents be-
yond the first x agents that have gained experience on the
task. Because, in each trial, a maximum of x agents can act
and gain experience, redundancy can only be generated over
multiple trials. The second question we ask is whether we
can determine the appropriate value of s to use in a system
when a specified level of redundancy is desired. To do so,
we first look at what happens in a single trial and ignore the
possibility of failing to make a team, then examine the com-
bination of these results with the recommendations on team
formation from the previous section.

We define c to be the desired level of redundancy where
cx is the desired number of agents with experience (and the
size of the pool is cx − x). Our goal is to determine the
s values for which the cxth agent is highly likely to have
gained experience and be part of the pool. The probability of
the ith agent acting and therefore gaining experience (Pi) is
no smaller for agents preceding the cxth in the ordering (i.e.,
Pi ≥ Pcx if i ≤ cx) since those will be given the opportunity
to act sooner and all agents have the same s. Here we show
formally that if s ≤ 1

ec , there is a constant probability that
the cxth agent will gain experience and if s > 1

c then it will

almost certainly fail to gain experience. After deriving these
bounds, we present an empirical case to show that the real
system is consistent with our formal advice.

The proof for this follows a similar structure as the above
proof, and we begin by traversing all n agents and marking
each agent with probability s. Let K be a random variable
specifying the number of marks in the first cx agents. We
first describe a bound on s that is sufficient to assure a rea-
sonable Pi, then we describe a looser bound that is required
if we do not want Pi to converge to 0 with team size.
Theorem 2 In a single trial of the task allocation process,
if s ≤ 1

ec , then Pcx = 1− e−Ω(1).
Proof: The expected number of marks in the first cx agents
is c · x · s, E {K} = cxs. Let

δ =
1

cs
− 1

and note that

(1 + δ) cxs =

(
1 +

1

cs
− 1

)
cxs = x

We use Chernoff inequality to bound the probability that
there are at least x marks in the first cx agents:

Pr {K ≥ x} = Pr {K > (1 + δ)E {K}}

<

[
eδ

(1 + δ)1+δ

]E{K}

= e−csx · (ecs)x

So when s < 1
ec , this approaches 0 exponentially fast with

x. Thus the cxth agent almost surely is given the opportunity
to act and Pcx = s ·

(
1− e−Ω(x)

)
≈ s = 1− e−Ω(1).

Theorem 2 gives us a bound for sufficient values of s for
the cxth agent to gain experience. If the cxth agent has a
constant probability of gaining experience in a single trial,
then a constant number of repeated trials will ensure the
agent eventually gains experience. As stated, agents that pre-
cede the cxth agent in the ordering will have no worse prob-
ability of gaining experience, so the same logic applies to
all of them. Now that we have seen what sufficient values of
s are to ensure experience, let us examine what values of s
are so large that they prevent the cxth agent from even being
given the opportunity to gain experience.
Theorem 3 In a single trial of the task allocation process,
if s > 1

c , then Pcx = e−Ω(x).
Proof: Again E {K} = cxs. Now let

δ = 1− 1

cs
and note that

(1− δ) cxs =

(
1− 1 +

1

cs

)
cxs = x

We use Chernoff inequality to bound the probability that
there are fewer than x marks in the first cx agents:

Pr {K < x} = Pr {K < (1− δ)E {K}}

< eδ
2E{K}/2

= e−
x

2cs (1− 1
cs)

2

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Av
g.

 #
 o

f t
im

es
 a

ct
or

s

s and (cx)^th agent becoming an actor: n=100, x=20, c=2

s < 0.18 more likely to act
s > 0.5 less likely to act

Figure 4: The influence of s on the cxth agent becoming an
actor when c = 2. The vertical lines are the formal bounds.

So when s > 1
c , this approaches 0 exponentially fast with

x. Thus the probability that the cxth agent is even given the
opportunity to act is exponentially small for constant s. �

Theorem 3 tells us that when s > 1
c , later agents will very

probably be starved of the opportunity to gain experience by
agents coming before them in the ordering. This means that
unless there are an exponential number of trials, it is unlikely
that repeated trials will allow us to build up a redundancy of
cx agents with experience.

Of course, these are asymptotic results that become more
correct as team size and redundancy factor increase. There-
fore, it is instructive to consider empirical results for specific
values.

Consider again the scenario in which there are 100 agents
in all (n = 100) and we face a task that requires 20 agents
(x = 20). We would like a redundancy factor of 2 (c = 2),
which means that we are hoping that the first 40 agents will
gain experience over time on that task given enough trials.

Figure 4 shows the influence of s on the cxth agent be-
coming an actor. The x-axis plots s values. The y-axis mea-
sures the average and standard deviation of the number of
times the cxth (here the 40th) agent becomes an actor in 20
simulations of 100 trials each. From our theory, we see that
the 40th agent is more likely to act when s < 1

ec ≈ 0.18,
and less likely to act when s > 1

c = 0.5. When s < 0.18,
the plot shows an increase in the number of times this agent
becomes an actor with increasing s value. When s > 0.5,
the plot shows a decrease in the number of times this agent
becomes an actor with increasing s value, to the point that it
no longer acts from s ≈ 0.75.

The results shown in Figure 4 demonstrate that the num-
ber of times the cxth agent acts is consistent with our for-
mal, probabilistic predictions; however, it does not neces-
sarily confirm directly that redundancy within the system is
consistent with our theory. Figure 5 shows influence of s
on the formation of backup pool of agents. Again, the x-
axis plots s values, but now the y-axis measures the average
number of actors in the 20 simulations. The number of ac-
tors obtained is much higher when the cxth agent acts than

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Av
g.

 #
 o

f A
ct

or
s

s

s and formation of backup pool of agents: n=100, x=20, c=2

2x Redundancy level

s < 0.18 40^th agent likely to act
s > 0.5 40^th agent unlikely to act

Figure 5: Effect of s on the formation of backup pool of
c = 2 in a single task. The vertical lines indicate our formal
bounds, and the horizontal line shows when the redundancy
factor is met.

when it does not. As seen here, when it is likely to act, the
maximum average number of actors obtained is around 85;
65 agents more than the required 20 agents with experience.
And, when it is unlikely to act, the maximum number of ac-
tors obtained is around 48; 28 agents more than the required
20 agents with experience. Thus, the inclusion of the cxth
agent in the backup pool is shown to increase the size of the
backup pool. These empirical results are consistent with
our formal predictions even though the values for n, x, and
c are relatively small. Moreover, for large c, the difference
between 1

c and 1
ec become smaller, making the advice more

specific as more redundancy is required.
Astute readers will note that the average number of ac-

tors again drops when s is too small, even though s < 1
ec .

This occurs for a different reason: complete teams are not
being formed when s is too small. Combining the theoret-
ical advice from the previous section with this section and
assuming the user wants to maximize the back up pool with
at least cx agents with experience, we see that our theory
can offer very specific and tangible advice.

Referring back to Figure 2 (where n = 100 and x = 20),
complete teams will almost certainly form if s ≥ x

n = 0.2
and, according to Figure 5, c-factor redundancy is ensured if
s < 1

ec ≈ 0.18. So without even running the simulation, we
note that an s value in that range (0.18 - 0.2) is a good first
choice. Indeed, as we can see in Figure 5, this appears opti-
mal. Note that if s < x−1

en ≈ 0.07, we will almost certainly
fail to form a team — which is roughly close to where we
lose a redundancy factor of two on the left part of the graph.
Also, if s > 1

c = 0.5, we will almost certainly starve later
agents and fail to get redundancy, which is roughly close to
where we lose a redundancy factor of two on the right part
of the graph.

Conclusions
In this work, we examine the use of an agent response prob-
ability as a method for generating redundancy in an MAS.

Redundancy is defined as a pool of extra agents with expe-
rience on a task beyond the necessary number of agents for
that task. Having agents respond probabilistically rather than
deterministically to a task means that not all of the primary
actors for a task may act when a task requires attention, giv-
ing other agents an opportunity to act and gain experience
on the task.

We present a formal analysis of a response threshold
based system in which agents act probabilistically. Given the
number of agents in the multi-agent system and the num-
ber of agents needed to satisfiy a task, we are able to es-
timate two factors regarding the system’s response proba-
bility value. First, we can estimate the range of response
probability values that are likely to allow the MAS to sat-
isfy the task demands. Second, we can estimate the range of
response probability values that are likely to allow the MAS
to achieve a specified level of redundancy. Empirical studies
using an agent-based simulation of the problem support our
theoretical results.

This work shows that a simple response probability model
may be used in decentralized multi-agent systems to dynam-
ically build and maintain redundancy in terms of agent ex-
perience. We are able to model such a system theoretically
and use this model to provide guidance on how to choose
response probability values for a given problem and goals.

Acknowledgments
We thank the reviewers for their helpful comments.
This work was supported in part by ONR grant
#N000140911043.

References
Agassounon, W., and Martinoli, A. 2002. Efficience and robustness
of theshold-based distributed allocation algorithms in multi-agent
systems. In Proc. 1st Int’l Joint Conf. Autonomous Agents and
MAS, 1090–1097.
Bonabeau, E.; Theraulaz, G.; and Deneubourg, J. 1996. Quanti-
tative study of the fixed response threshold model for the regula-
tion of division of labor in insect societies. Biological Sciences
362(1376):1565–1569.
Bonabeau, E.; Theraulaz, G.; and Deneubourg, J. 1998. Fixed
response thresholds and the regulation of division of labor in insect
societies. Bulletin of Math. Biol. 60:753–807.
Campos, M.; Bonabeau, E.; Theraulaz, G.; and Deneubourg, J.
2000. Dynamic scheduling and division of labor in social insects.
Adaptive Behavior 8(2):83–96.
Krieger, M. J. B., and Billeter, J.-B. 2000. The call of duty: Self-
organised task allocation in a population of up to twelve mobile
robots. Robotics and Autonomous Systems 30:65–84.
Nouyan, S. 2002. Agent-based approach to dynamic task alloca-
tion. In Proc. ANTS, LNCS 2463, 28–39.
Parker, L. E. 1998. ALLIANCE: An architecture for fault tolerant
multi-robot cooperation. IEEE Trans. Rob. & Automation 14(2).
Price, R., and Tino, P. 2004. Evaluation of adaptive nature inspired
task allocation against alternate decentralised multiagent strategies.
In Proc. PPSN VIII, LNCS 3242, 982–990.
Weidenm̈uller, A. 2004. The control of nest climate in bumblebee
(bombus terrestris) colonies: interindividual variability and self re-
inforcement in fanning response. Behav. Ecol. 15(1):120–128.

