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ABSTRACT

This work shows that a simple response probability model may be

used in decentralized multiagent systems to dynamically build and

maintain redundancy in terms of agent experience. We model this

system theoretically and use this model to provide guidance on how

to choose response probability values that ensure that task needs are

met and that ensure the a given level of redundancy is achieved.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

performance measures]
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1. INTRODUCTION
In this paper, we examine the use of probabilistic response in de-

centralized multiagent systems (MAS) and how such a mechanism

may be used to tune the level of redundancy in an MAS. Redun-

dancy is defined as “extra” agents beyond the required number that

are able to perform a task. These agents provide the MAS with a

back up pool in the event that the primary actor or actors for a task

are disabled or lost. We present a simple but effective method to

build and maintain a back up pool dynamically over time.

We are specifically interested in tasks where previous experience

leads to better performance, and redundancy may be generated by

allowing agents to gain experience while acting on a task. Such

an approach raises issues of how to balance the tradeoff between

optimizing performance and generating experience. This balance is

similar to the exploration-exploitation balance that many machine

learning algorithms seek as they attempt to dynamically learn new

information and optimally use the information they currently have

at the same time [?, ?]. Many real systems, such as social insect

colonies, face a similar tradeoff [?, ?]. These systems appear to use

a simple mechanism, an agent response probability, to balance the

tradeoff between giving individual ants or bees the opportunity to

gain experience on a task such as foraging and sending out their

best foragers to optimally harvest food.
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Examples of problems where such an approach is useful include

applications where agents must collaborate and develop trust-based

interactions [?, ?, ?]. Experience is the information that an agent

gains from previous interactions with other agents or with the en-

vironment. Experience is important because it affects an agent’s

decision making in future interactions.

Here, we present a formal analysis of this response probability

model, how it affects the ability of an MAS to satisfy a task’s needs,

and how it may be used to tune the level of redundancy in an MAS.

2. RESPONSE PROBABILITY IN AN MAS
Our test problem is a distributed task allocation problem with a

single task that needs to be addressed. Given a decentralized MAS

consisting of n agents, x : x < n agents must respond (form a re-

sponse team) each time the task occurs. Each agent independently

decides whether or not to respond to a task and gain experience.

We assume that our MAS is a variable response threshold system

in which each agent has a threshold value for each task. These

thresholds may be thought of as an agent’s relative willingness or

speed in responding to a task in need. Agents with lower thresholds

respond faster than agents with higher thresholds. In this implicit

ordering, lower threshold agents have more chances to respond to

the task than the higher threshold agents. Therefore, the response

team in this system only consists of first x low threshold agents.

We introduce a response probability, s : 0.0 ≤ s ≤ 1.0, that

affects whether or not an agent will act once its threshold has been

met. If an agent’s threshold is met before before x agents have

responded to the task, then that agent is offered an opportunity to

act and becomes a candidate. A candidate will choose to act with

probability s. If the candidate chooses to act, it becomes an ac-

tor and the number of responders to the task increases by one; if

it does not choose to act, then the next agent in the ordering is of-

fered the opportunity to act and becomes a candidate. Thus, the

response probability is the probability that a candidate will become

an actor. As we move from left to right in the implicit ordering,

the addition of the response probability s means that the response

team may not always consist of the left most x agents, and that

agents beyond the first x can receive an opportunity to act and gain

experience. We define a trial to be one instance in which a task

requires action from the MAS. While only a maximum of x agents

gain experience in each trial, over multiple trials, we expect more

than the first x agents to gain experience on the task. We define

the pool to be the redundant agents beyond the first x agents that

have gained experience over multiple trials. At high s values, be-

cause most of the first x agents have a high probability of choosing

to act, agents beyond first x have a low probability of becoming
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a candidate, and therefore we expect the pool size to be close to
zero. At low s values, because most of the firs x agents have a low
probability of choosing to act, agents beyond firs x have a high
probability of becoming a candidate, and therefore we expect the
pool size to increase. Thus, we see that s affects both the ability of
an MAS to form a response team and the level of redundancy that
can be achieved by the MAS over multiple trials.

3. ANALYSIS
Our analysis focuses on two aspects of the response probability,

s. First, how does s affect the ability of an MAS to successfully
form a response team. Second, how does s affect the ability of an
MAS to build and maintain redundancy.
Recall that an MAS is only successful in responding to a task if

it can form a response team, and a response team is formed when
x agents choose to work on the task. The firs question is whether
we can determine what s values will allow the MAS to successfully
form a reponse team. Using the Chernoff inequality, we fin that,
as n grows, a complete team will almost surely be formed when
s1 > x

n
and will almost surely not be formed when s2 < x−1

en
.

Redundancy is achieved when there is a pool of agents beyond
the firs x agents that have gained experience on the task. Because,
in each trial, a maximum of x agents can act and gain experience,
redundancy can only be generated over multiple trials. The second
question is whether we can determine the appropriate value of s to
use in a system when a specifie level of redundancy is desired.
We defin c to be the desired level of redundancy where cx is

the desired number of agents with experience (and the size of the
pool is cx−x). Our goal is to determine the s values for which the
cxth agent is highly likely to have gained experience and be part
of the pool. The probability of the ith agent acting and therefore
gaining experience (Pi) is no smaller for agents preceding the cxth

in the ordering (i.e., Pi ≥ Pcx if i ≤ cx) since those will be given
the opportunity to act sooner and all agents have the same s. Using
the Chernoff inequality, we fin that if s3 ≤ 1

ec
, there is a constant

probability that the cxth agent will gain experience and if s4 > 1
c

then it will almost certainly fail to gain experience.
We present an empirical case containing 100 agents (n = 100),

a task that requires 20 agents (x = 20), and a redundancy factor
of 2 (c = 2) to show consistency with our formal advice such that
the firs 40 agents will gain experience on that task given enough
trials. Figure 1 shows influenc of s on the formation of a response
team and a backup pool of agents. The x-axis plots s values and the
y-axis measures the average number of actors in 20 simulations. At
s1 > 0.2, successful team formation occurs and is shown here by
the average number of actors being greater than or equal to 20 (task
requirement). The bounds for the 40th agent to gain experience and
belong to the back up pool (s3 ≤ 0.18, s4 > 0.5) is also satisfied
and thus the redundancy requirement is also met.

4. CONCLUSIONS
In this work, we examine the use of an agent response probabil-

ity as a method for generating redundancy in an MAS. Redundancy
in this work is define as a pool of extra agents with experience on
a task beyond the necessary number of agents for that task. Having
agents respond probabilistically rather than deterministically to a
task demand means that not all of the primary actors for a task may
act when a task requires attention, giving other agents an opportu-
nity to act and gain experience on the task.
The inspiration for this work comes from social insect societies

which exhibit a similar mechanism for balancing the gain of new
information (let agents gain experience and improve performance)
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s and formation of backup pool of agents: n=100, x=20, c=2

s1 > 0.2 team formation likely
s2 < 0.06 team formation unlikely

s3 <= 0.18 40th agent likely to act

s4 > 0.5 40th agent unlikely to act

2x redundancy level

Figure 1: Effect of s on the response team formation and for-
mation of backup pool of agents in a single task.

and the optimal use of known information (send out the best per-
forming agents to do a job). The simple response probability mech-
anism not only effectively generates redundancy in a decentralized
system, but it also allows the system to maintain redundancy dy-
namically over time despite perturbations to the system such as loss
of agents. These characteristics of robustness and adaptability are
also desirable in computational decentralized multiagent systems
and our goal is to understand how response probability may be ef-
fectively used in engineered MAS.
We present a formal analysis of a response threshold based sys-

tem in which agents act probabilistically. Given the number of
agents in the multiagent system and the number of agents needed to
satisfi a task, we are able to estimate two factors regarding the sys-
tem’s response probability value. First, we can estimate the range
of response probability values that are likely to allow the MAS
to satisfy the task demands. Second, we can estimate the range
of response probability values that are likely to allow the MAS to
achieve a specifie level of redundancy.
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