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Abstract. Coevolutionary algorithms offer great promise as adaptive problem
solvers but suffer from several known pathologies. Historically, spatially embed-
ded coevolutionary algorithms seem to have succeeded where other coevolution-
ary approaches fail; however, explanations for this have been largely unexplored.
We examine this idea more closely by looking at spatial models in the context
of a particular coevolutionary pathology: loss of gradient. We believe that loss
of gradient in cooperative coevolution is caused by asymmetries in the problem
or initial conditions between populations, driving one population to convergence
before another. Spatial models seem to lock populations together in terms of evo-
lutionary change, helping establish a type of dynamic balance to thwart loss of
gradient. We construct a tunably asymmetric function optimization problem do-
main and conduct an empirical study to justify this assertion. We find that spatial
restrictions for collaboration and selection can help keep population changes bal-
anced when presented with severe asymmetries in the problem.

1 Introduction

Coevolutionary algorithms (CEAs) are increasingly popular extensions of traditional
evolutionary algorithms (EAs). The most fundamental differences between CEAs and
EAs stem from the adaptive nature of fitness evaluation in coevolutionary systems: in-
dividuals are assigned fitness values based on direct interactions with other individuals.
Examples of such systems include competitive approaches where an individual in one
population receives fitness based on the result of a competition with one or more indi-
viduals, as well as cooperative approaches where an individual represents a component
of a larger, more structured problem, and receives fitness based on how well it performs
in conjunction with individuals from other populations.

There is a lot of intuitive appeal to coevolutionary algorithms. In the case of com-
petitive systems, there is the hope of establishing an arms race, where steady progress
is made by mutual and reciprocal adaptations between competing groups of individuals
[1]. Cooperative systems have the same sort of hope, though perhaps the term “parallel
adaptive changes” might be more appropriate to its collaborative nature. In spite of their
appeal, coevolutionary algorithms are often challenged by seemingly simple problems.
Constructing algorithms that facilitate arms-race type behaviors is far from easy.
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One difficulty common to both competitive and cooperative coevolutionary algo-
rithms is the loss of gradient problem, in which one population comes to severely dom-
inate the others, creating an impossible situation where the other populations have in-
sufficient information from which to learn. Suppose a grand master of chess repeatedly
plays a child, who is merely learning: if the child gets no more information than the
result of the game, he is unlikely to learn much from the process.

Of particular interest to us are cooperative coevolutionary algorithms (CCEAs).
These algorithms have appeal when applied to problems with large domain spaces hav-
ing certain structural properties among interacting components. The intuition behind
this advantage is that the algorithm adaptively searches only projections of the space
at any given time, thus presenting a narrower search domain in a particular generation.
However, loss of gradient can also occur in CCEAs when the diversity of a subset of
the populations suddenly decreases, leaving the others searching only a static projection
and not the full problem [2].

The key to solving the loss of gradient problem would seem to be found in help-
ing the algorithm maintain some kind of balance between the populations in terms of
evolutionary change. Here biology suggests a potential solution: establish some locality
constraints in terms of selection and collaborator interactions [3] Indeed there is prece-
dent for such fine-grained spatially embedded population models in both traditional
EAs [4], as well as coevolutionary systems [5]. Moreover, recent empirical research has
suggested that spatial models may indeed give CEAs some kind of advantage, though
the reason for this advantage has remained unexplored. We believe that such spatial
CEA successes are due to their ability to thwart the loss of gradient problem by con-
straining the speeds at which populations themselves can propagate changes, as well as
the speeds at which populations can provide interaction information to the other popu-
lations. This paper explores the relationship between spatial models and the causes of
loss of gradient in cooperative coevolutionary algorithms. We make no claims regarding
the general utility of spatial CCEAs for solving static function optimization problems,
rather we seek only to expose some of the reasons why spatial embedding may benefit
coevolution when solving problems that have certain properties.

The next section provides background of the cooperative coevolutionary framework
we consider, the loss of gradient pathology, and spatial embedding in EAs. The third
section describes our spatial CCEA, including the effects of constraining the locality
of certain operators. Our experimental design and results are described in detail in the
fourth section. The paper terminates with a section discussing our conclusions, as well
as indicating areas of future work highlighted by our research.

2 Background

There are a variety of models of cooperative coevolution, beginning with the early work
of Husbands and Mill [6], to more recent models by Potter [7], as well as Moriarty
and Miikkulainen [8]. This paper focusses on the Potter model of cooperative coevo-
lution. Here each population contains individuals that represent a particular component
of the problem, so that one member from each population is needed in order to as-
semble a complete solution. Evaluation of an individual from a particular population
is performed by assembling the individual with collaborating partners from other pop-
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ulations. Often multiple collaborators are used to gain a better quality estimate of an
individual’s contribution to the interaction. An individual’s fitness could be the mean
of such evaluations, or the max, among other approaches. Aside from evaluation, the
populations are evolved independently.

An example may help clarify things. Suppose we are optimizing a two argument
function, f(x, y). One might assign individuals in the first population to represent the x
argument and the second to represent y. Each population is evolved separately, except
that when evaluating an individual in some population (e.g., x), collaborating represen-
tatives must be chosen from the other population (y) in order to obtain an objective func-
tion value with a complete solution, f(x, y). A simple example collaboration method is
to choose a representing member by using the most fit individual from the other other
population as determined by the previous round of evaluations. Another approach is to
pick partners at random from the other population. Once a complete solution is formed,
it can be evaluated and the resulting score can be assigned to the individual as the mean
of several of these interactions.

Though the behavior of cooperative and competitive CEAs can certainly differ, they
also share some pathologies. One such pathology is that of loss of gradient. In a multi-
population model, loss of gradient occurs when one population converges to strategies
that provide the other populations no hope for meaningful search due to the unavail-
ability of informational distinctions between individuals. In a competitive system, this
suggests that one population has severely dominated the other, such that no information
is learned from a contest between individuals from those populations. In a cooperative
system, this suggests that one or more populations has converged, and the projection of-
fered by these converged populations during collaboration is misleading or degenerate
in some way for the populations that are still attempting to progress.

The term loss of gradient stems primarily from three works relating to the analysis
of competitive coevolutionary algorithms. Juillé and Pollack [9], as well as Ficici and
Pollack [10], primarily focus on methods for measuring and maintaining coevolutionary
progress while discussing the need for successful competitive algorithms to maintain a
gradient of search. Watson and Pollack [11] specifically introduce the term, using a
simple problem structure to help illustrate and identify it as one of several pathologies
of competitive coevolutionary systems. While more recent work suggests that loss of
gradient may not be as big a problem for competitive algorithms as problems related to
overspecialized focussing [12], it seems evident that it remains a significant challenge.
Multi-population coevolution works by making parallel adaptive changes in interact-
ing populations, but a balance between these changing populations must exist in order
maintain co-adaptive search gradients. When that balance is lost, the search can fail by
forcing changes in the populations to become disengaged, resulting in polarization of
the populations in terms of subjective fitness assessment [11].

Though loss of gradient is perhaps more easily understood in the context of com-
petitive coevolution, the same problem challenges cooperative models. It can happen,
for instance, when rapid asymmetric changes in one population lead it to converge to
near homogeneity, forcing the other disengaged populations to be driven into arbitrary
equilibria [2]. Such inequality can be created by many factors including initialization
effects, asymmetries in algorithmic choices or asymmetries in the problem itself.
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Biologists and social scientists have studied spatially embedded evolution and co-
evolution for some time, typically taking game-theoretic approaches to understanding
the dynamics in single population systems playing games such as iterated prisoner’s
dilemma [13].Researchers in the field of evolutionary computation have also studied
spatial models in some detail [4, 14], but analysis of coevolutionary spatial models
has primarily been relegated to discussions of general CEA performance measures [1].
Nevertheless, applications of such systems have proved effective [15–17], sometimes
demonstrating clear advantages over non-spatial CEAs [5]. Unfortunately, the underly-
ing cause of this advantage has not been addressed.

3 A Spatial CCEA

The basic idea behind spatially embedded evolutionary algorithms is quite simple. In
the most obvious case, the individuals in the population are distributed on a 2-D (often
toroidal) grid. Each individual occupies a specific location on that grid, and locality
is defined by the vertical and horizontal topological connections. The algorithm works
the same as a traditional evolutionary algorithm, with the exception of selection. New
individuals for each position are selected locally using a pre-defined neighborhood.
Virtually any traditional selection operator can be applied in this method, though its
purview is limited to the individuals in the local neighborhood of the position under
consideration. Updates to the current population may be synchronous or asynchronous.

For example, consider a synchronous spatial variant of a traditional generational
evolutionary algorithm. Let’s suppose the algorithm uses binary representation with bit-
flip mutation, fitness proportionate selection, and a 2 × 2, von Neumann neighborhood
(a diamond shaped subset of the grid covering five points). Individuals are distributed on
the grid positions, initialized uniformly at random, then evaluated against the objective
function. We then produce a new child for each grid position by selecting from the
individuals in the surrounding neighborhood, proportionally according to their fitness
values. The offspring produced for that position is subjected to mutation and placed into
the next generation’s grid at the same position. A new position is then considered in the
same way, and the process is repeated until all positions have been considered. At this
point the generation is complete and a new generation begins.

The most distinctive parameter of spatial models of this sort is the neighborhood
definition. It turns out that for several geometric shapes, a general size measure (called
the radius of the neighborhood) is useful for understanding diffusive properties of the
selection method. The larger the radius, the faster information is propagated throughout
the population, the smaller the radius, the slower [4].

In the case of a simple, spatial CCEA, things are very similar. We now consider
separate grids for each population, and “align” the 2-D grids in a stacked fashion, form-
ing a 3-D lattice. Now a given population grid position has an adjacent position above
or below the current position in another population grid. In addition to selection, col-
laboration now makes use of the neighborhood mechanism. Representative partners are
selected from a neighborhood in the adjacent population(s), providing another type of
locality restriction altogether—one that controls the amount of information about in-
teractions a population receives. In this case the larger the radius of the collaboration
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neighborhood, the more information about potential partners is available, the smaller
the radius, the less information.

Controlling these two relative sizes appears to be very important to the success of
coevolution in many cases. By restricting the rate of diffusion due to selection, the rates
of change of EAs associated with each population can be reduced. By restricting the
amount of available interaction information, the EAs can be given time to adapt to radi-
cal phenotypic shifts in the collaborating population before being exposed to degenerate
partners. If rapid, asymmetric losses of diversity are our major concern then local se-
lection slows the rate at which populations reach homogeneity and local collaboration
allows topologically distant partners the chance to make changes before being exposed
to the new individuals. The intuition is that the overall effect acts as a kind of cap to
population advancement, “locking” the populations together in terms of their relative
evolutionary changes.

4 Experimental Results

4.1 The ASYMMTWOQUAD Problem

Recall that asymmetries in a problem can exacerbate the loss of gradient pathology for
the CCEA. To help show this, we define a class of problems that allows one to construct
instances that vary in terms of degree of problem asymmetry. The problem class defined
below consists of two quadratic peaks, one a global maxima and the other a local sub-
maxima. Each of these two peaks can be varied independently to adjust asymmetric
conditions in the landscape between the two arguments.

Definition 1. Given constant values k1 and k2 defining the relative heights of two
peaks; parameters sx1, sx2, sy1, and sy2 defining peak widths; and points (x̄1, ȳ1) and
(x̄2, ȳ2) defining the locations of the peaks, the function ASYMMTWOQUAD : R×R →
R (ATQ) is defined by

quad1(x, y) = k1 −
[
sx1 · (x̄1 − x)2 + sy1 · (ȳ1 − y)2

]

quad2(x, y) = k2 −
[
sx2 · (x̄2 − x)2 + sy2 · (ȳ2 − y)2

]

ASYMMTWOQUAD(x, y) = max (quad1, quad2)

For our purposes, the parameters controlling the width of the peaks are most salient.
The larger the sx1 value is, the narrower the first peak becomes along the x-axis. We can
create a situation that endangers the CCEA of suboptimal convergence by tightening the
global peak’s width relative to the suboptimal peak [2],and we can make this situation
increasingly asymmetric by tightening more along one axis than another. Here, the sx2

and sy2 parameters were both set to 1, and the sx1 parameter was held fixed at 8. The sy1

parameter, however, was varied using the values {8, 16, 32, 64, 128, 256, 512}. The two
optima are located at (8, 1) and (1, 8), and their objective values (k1 and k2) are 180 and
140, respectively. Domain values for x and y were restricted to [1, 8]. This problem class
is simple enough to intuit salient properties, while allowing a researcher to generate
a range of problems from very simple to quite difficult. Though the domain itself is
relatively limited in scope, it serves us well here since our goal is to understand the
effects spatial representations have on loss of gradient, not to demonstrate any specific
advantage of spatial CCEAs over EAs in general.
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4.2 Basic Experimental Setup

In all cases, the basic underlying algorithms were generational EAs with fitness propor-
tionate selection. There were two populations, each containing individuals representing
one of the two arguments to the ASYMMTWOQUAD function. The genotype of each
individual was encoded as a binary string, each argument ranging in [1, 8]. The string
length and population sizes were fixed for these experiments. There were 100 individ-
uals in each population, each of which were l = 128 bits long, thus n = 256 bits.
Collaboration was handled as follows. Five representatives from the alternate popu-
lation were selected at random from either the entire population, or from the locally
restricted areas defined by the spatial approaches. Each representative was evaluated
with the current individual, and the average score was assigned for fitness purposes.

Though other population sizes, string lengths, and collaboration sizes are not shown,
some were tested and the results were consistent with those reported here. It is our
intent that the population size is linear with respect to the string length and that the
number of collaborators is bounded above by the square root of the population size
(with a constant factor of 1/2). Such a rule leads to reasonably sized populations for
the ASYMMTWOQUAD problem class and provides useful information for future an-
alysts. Bit-flip mutation is used at a rate of 1/l. There is evidence that crossover may
exacerbate the effects of loss of gradient in CCEAs [2], and since our intent is to try to
understand the effects of spatial embedding on loss of gradient at the most basic level
we choose not to complicate the discussion in this article by including crossover in our
discussion. This notwithstanding, though not shown, we also ran our experiments with
parameterized uniform crossover operator of varying rates and the results are consistent
with the findings stated here. Where possible, we keep things intentionally as simple as
possible here to allow for future analysis.

4.3 Balancing Evolutionary Change

As we’ve already mentioned, the ASYMMTWOQUAD problem described above be-
comes increasingly more asymmetric as the sx1 parameter is increased. The effect of
this is to make the global peak narrower in one dimension. This creates a situation in
which one population has a clear advantage if for no other reason than the fact that the
ratio of domain coverage of the global peak is larger in one dimension than another. The
resulting effect on simple CCEAs is a decrease in performance due to loss of gradient.

Our hypothesis is that the locality constraints of selection and collaboration in the
spatially embedded model will help keep the system in balance in terms of evolutionary
change, thus improving performance. We first consider two algorithms, a more tra-
ditional non-spatial CCEA described above and a spatially embedded analog of this
algorithm. In the spatial model, individuals in each population are spread out on a 2-
D toroidal 10 × 10 grid. The neighborhood sizes for selection and collaboration are
performed in a 2×2 diamond of radius 1 from a given position (covering 5 grid points).

To test these two algorithms we ran 14 experimental groups, 7 with a tradi-
tional non-spatial CCEA, and 7 with a spatial CCEA. These 7 groups correspond the
ASYMMTWOQUAD problem parameter values sx1 ∈ {8, 16, 32, 64, 128, 256, 512}.
The results are shown in two graphs in Figure 1. In both graphs, the x-axis indicates re-
sults from the different experimental groups specified by the sx1 parameter. Each point
of the top graph illustrates the mean best-ever fitness value of 50 trials and the vertical
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Fig. 1. Spatial and non-spatial CCEA results on the ASYMMTWOQUAD problem as sx1 (x-axis)
varied. Points in the top graph represent mean and confidence intervals of best-ever (y-axis)
values in 50 trials. Points in the bottom graph represent the ratio of trials (y-axis) that are likely
to globally converge.

wings surrounding that point illustrate the 95% confidence intervals of that group. Each
point in the bottom graph represents the ratio of the 50 trials where the best-ever value
exceeded 140, and thus indicates the ratio of populations that plausibly may eventually
converge to the global peak.

The best-ever values of the groups were tested using pair-wise t-tests with Bonfer-
oni adjustment. The result indicates that for all values of sx1 the spatial model signifi-
cantly outperforms the non-spatial model (with confidence of 95%). These results were
consistent for population size of 49, l = 64 using 3 collaborators. They were also con-
sistent with results applying parameterized uniform crossover with a crossover rate of
100% and swap rates of 0.5 and 0.2 (not shown).

The lower panel of the figure gives us some clue as to why the spatial groups resulted
in higher performance. As the problem becomes increasingly asymmetric, the ratio of
suboptimally converging populations drops much faster for the non-spatial CCEA than
for the spatial CCEA.

Although it is not shown here for space reasons, it is also the case that the standard
deviations in fitness values are significantly higher for the spatial model than for the
non-spatial model in every case, indicating higher levels of diversity. Examining the
inter-population diversity, the relative differences in standard deviations between popu-
lations of the same model, helps reveal something about the differing rates of change in
the two populations. Here, the inter-population diversity within the first ten generations
(the early stages of population convergence) reveals that the standard deviations of the
two populations in the non-spatial CCEA differ significantly. This is only true for the
sx1 = 256 case for the spatial model. This suggests that the spatial model may very
well have an advantage with respect to differing rates of evolutionary change.

4.4 Collaboration and Selection

There are at least three ways this spatial model might improve upon the non-spatial
model: local restrictions to selection, local restrictions to collaboration, and a combined
impact of both of these.
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Fig. 2. Results for two CCEAs are presented: non-spatial selection with spatial collabora-
tion and non-spatial collaboration with spatial selection. The results are reported for the
ASYMMTWOQUAD problem as sx1 (x-axis) varied. Points in the top graph represent mean and
confidence intervals of best-ever (y-axis) values in 50 trials. Points in the bottom graph represent
the ratio of trials (y-axis) that are likely to globally converge.

First, an argument could be made that restricting selection to local neighborhoods
cannot be responsible for the behavioral improvement. After all, the effects of local-
ity on selection are mainly speed effects. One would expect to see a slowing of the
pathology, but certainly not its absence. While this is true, it is also the case that spa-
tial representations help maintain diversity, and this has been known to help resolve
difficulties in certain kinds of acyclic problems [18].

The second difference between the spatial model and the non-spatial one is the lo-
cality restriction imposed upon collaboration. One may again be tempted to dismiss
this component as the explanation for improvement since a smaller pool of potential
collaborators seems to invite even more challenges to the CCEA. However, restricting
collaborators to a local neighborhood restricts the flow of interaction information be-
tween the two populations, allowing one population to have more time with a given set
of interactions before they are washed away by selection.

The most satisfying answer is that the improvement results from a combination of
these two mechanisms. Slowing selection down and maintaining enough diversity to
give one population time to catch up to the other, while restricting the information flow
between the populations in such a way as to protect distant population members from
unhelpful representatives from the collaborating population. We ran the same experi-
ments as before for two more sets of groups, save that this time the spatial restrictions
were used for only one of the two mechanisms. In the first set, selection is performed
across the entire population but collaboration occurs in the 2×2 diamond neighborhood
(“nsp select”), while in the second set the situation was entirely reversed (“nsp collab”).
Figure 2 shows these results.

As can be seen from these graphs, the advantage the spatial model has over the non-
spatial does indeed require both collaboration and selection to be restricted. Removing
either produces results that are statistically indistinguishable from those of a completely
non-spatial CCEA from the perspective of best-of-run performance results. Looking
once again at the relative differences in standard deviations between populations in the
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first ten generations is helpful. In almost all cases there were significant differences
between population standard deviation scores, just as in the fully non-spatial case. This
again suggests that both restrictions are necessary to explain the spatial CCEA’s ability
to thwart loss of gradient.

5 Conclusions and Future Work

Coevolution offers much promise, but achieving consistently successful performance
from coevolutionary algorithms is a complicated and important research issue. Histor-
ically, many of the reported successes with coevolution have employed fine-grained,
spatially embedded approaches. In some cases, researchers have reported success on a
problem using a spatial embedding, while a distinct lack of success when a non-spatial
CEA is applied to the very same problem [5]. This paper begins to answer why. The
study of the general performance quality of spatial CCEAs is not germane here.

Recent analytical work has suggested that not only does the loss of gradient pathol-
ogy affect cooperative coevolutionary algorithms, but it might be caused, or at least
exacerbated by an imbalance in evolutionary change between co-adapting populations
[2]. Our hypothesis here is that a spatial embedding is one way to help restore this bal-
ance by locking together the rates of relative changes between populations. We explore
this hypothesis using a simple, tunably asymmetric landscape and use a cooperative
coevolutionary algorithm to optimize this function.

We examined the CCEA with and without spatial restrictions for collaboration and
selection together, as well as independently. The results showed that as the problem be-
comes increasingly asymmetric, the degradation in performance is far less in the fully
spatial model than any other combination of spatially-restricted algorithms. Moreover,
the ratio of trials that optimally converge was typically much higher for the spatial al-
gorithm than for the non-spatial CCEA. Further, there seems to be some evidence that
inter-population diversity measures are more disparate in the more non-spatial case. All
of this leads us to conclude that spatially embedded cooperative coevolutionary algo-
rithms use locality restrictions as a means of helping maintain balanced evolutionary
change between populations, and that both the collaboration process and the selection
process need to be so restricted. This effect appears to be largely due to the spatial
model’s ability to maintain larger levels of diversity in the population, but also because
it keeps these levels somewhat balanced between populations.

The exact nature of these diversity differences has yet to be fully explored, and
is a topic for further research. Additionally, a much more careful examination of the
effects that locality restrictions have on competitive models, where loss of gradient is
perhaps more intuitively understood, should be undertaken. Finally, as we develop a
greater understanding for the causes of pathologies such as loss of gradient, we should
begin exploring augmentations to traditional CEA approaches that help counteract these
challenges. Spatial models are not the only solution to loss of gradient, but they are one
more tool in a practitioner’s toolbox to help them with such difficulties.
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