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ABSTRACT
Though recent analysis of traditional cooperative coevolu-
tionary algorithms (CCEAs) casts doubt on their suitabil-
ity for static optimization tasks, our experience is that the
algorithms perform quite well in multiagent learning set-
tings. This is due in part because many CCEAs may be
quite suitable to finding behaviors for team members that
result in good (though not necessarily optimal) performance
but which are also robust to changes in other team members.
Given this, there are two main goals of this paper. First, we
describe a general framework for clearly defining robustness,
offering a specific definition for our studies. Second, we ex-
amine the hypothesis that CCEAs exploit this robustness
property during their search. We use an existing theoretical
model to gain intuition about the kind of problem proper-
ties that attract populations in the system, then provide a
simple empirical study justifying this intuition in a practical
setting. The results are the first steps toward a constructive
view of CCEAs as optimizers of robustness.

Categories and Subject Descriptors
I.2.m [Artificial Intelligence]: Miscellaneous

General Terms
Algorithms, Theory, Experimentation

Keywords
Robustness, coevolutionary algorithms, cooperative coevol-
ution, compositional systems

1. INTRODUCTION
Coevolutionary algorithms (CEAs) are increasingly popu-

lar extensions of traditional evolutionary algorithms (EAs).
The most fundamental differences between CEAs and EAs
stem from the adaptive nature of fitness evaluation in coevo-
lutionary systems: individuals are assigned fitness values
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based on direct interactions with other individuals. Such
systems have historically been categorized as competitive or
cooperative. Our interest is in this latter category of co-
operative coevolutionary algorithms, which are capable of
exploiting the compositional nature of learning problems in-
volving multiple, interacting agents. Specifically, composi-
tional approaches use an individual to represent a compo-
nent of a larger, more structured problem. Such a compo-
nent receives fitness based on how well it performs in con-
junction with individuals from other populations.

In the case of compositional systems, one hopes to estab-
lish a parallel adaptive gradient (akin to the notion of an
arms race [3]), where steady progress is made by mutual
and reciprocal adaptations between collaborating groups of
individuals. Unfortunately, in spite of their appeal, coevolu-
tionary algorithms are often challenged by seemingly simple
problems. Cooperative coevolution has been well-studied
over the last decade, both empirically and analytically, and
most of what has been learned concerns their application
to static optimization problems. Theoretical analysis has
shown that traditional versions of these algorithms may not
be well-suited for static optimization tasks, and several sug-
gestions for how to modify them for these domains have been
proposed [14, 2]. In spite of this, experience in practice has
been quite different in other types of problem domains: Co-
operative coevolutionary algorithms (CCEAs) seem to pro-
duce very good behaviors of multiagent teams [18].

Though there are many reasons why this is the case, one
possible explanation involves a change in viewpoint. When
we apply our algorithms to multiagent learning problems, we
are not necessarily interested in finding the optimal team.
Instead, we are interested in finding a team that performs
well, but is also robust to deviations in individual mem-
ber behaviors. This form of robustness is desirable because
in practice the capabilities of team members, and even the
makeup of the team itself, often change over time. Such a
viewpoint is consistent with the above literature, which sug-
gests that CCEAs tend to discover individuals that partner
well with a broad range of individuals from the other pop-
ulations [23]. Indeed, our experience suggests that CCEAs
are particularly well-suited to finding solutions that include
a type of robustness of a component’s performance with re-
spect to other components with which it interacts.

This paper offers a study of a simple compositional sys-
tem, taking the first steps toward the constructive view that
many CCEAs optimize for some form of robustness. There
are two main objectives of the work. First, recognizing that
there are many ways to define the term “robustness”, and



inspired by the robustness analysis field of the operations
research community, we offer a general framework for defin-
ing robustness, including a specific and practical meaning
appropriate for our context. Second, we leverage intuition
obtained from considering existing formal models of a com-
mon CCEA to construct an empirical study that demon-
strates that these algorithms are well-suited for finding so-
lutions with this kind of robustness. In general, we believe
the paper provides a constructive clarification of the kinds
of compositional problems for which many CCEAs are most
appropriate.

2. BACKGROUND

2.1 Cooperative Coevolution
Historically, the first application of coevolution to a com-

positional problem can be traced back to work by Husbands
and Mill[7]. This algorithm provided a direct decomposi-
tion of a planning and scheduling problem space into com-
ponents that reflected various shared resources in a machine
shop, and it applied parallel EAs to try to find an opti-
mal schedule for those resources. Two very different general
frameworks for applying coevolution to compositional prob-
lems were provided by Potter [15] and Moriarty and Miikku-
lainen [12]. This paper focusses on the Potter model, which
is a more generalized form of the approach by Husbands
and Mill. Potter defines a multipopulation architecture for
cooperative coevolution to address compositional problems.
Here each population contains individuals that represent a
particular component of the problem, so that one member
from each population is needed in order to assemble a com-
plete solution. Evaluation of an individual from a particular
population is performed by assembling the individual with
collaborating partners from other populations. Aside from
evaluation, the populations are evolved independently.

An example may help clarify things. Suppose we are op-
timizing a two argument function, f(x, y). One might as-
sign individuals in the first population to represent the x

argument and individuals in the second population to rep-
resent y. Each population is evolved separately, except that
when evaluating an individual in some population (e.g., x),
collaborating representatives must be chosen from the other
population (y) in order to obtain an objective function value
with a complete solution, f(x, y). A simple example collabo-
ration method is to choose each of the members of the other
population, collaborate to compute an objective value for
each interaction, then assign the average value of all such in-
teractions to the individual in the first population as fitness.
Selecting a single random individual to serve as a collabora-
tor can be seen as a kind of probabilistic approximation of
this method.

There have been a variety of applications of this approach.
Indeed, cooperative coevolution has proved to be an effective
method for many types of learning problems (e.g., learning
constructive neural networks [17], and rule learning [16, 19]),
including and especially multiagent learning problems [18]
where the goal is not always optimality.

Analytical work surrounding CCEAs has shown that the
algorithms are not necessarily attracted to the optimal col-
laboration1 and may not be well-suited for static optimiza-

1Optimal collaboration is defined as the composite team with
the optimal performance.

tion tasks in its most näıve form [23]. In fact, there has
been some work attempting to modify CCEAs to correct
this problem either by biasing the algorithm toward the op-
timum [14] or by making use of Pareto selection and memory
mechanisms [2]. While these studies concentrate on making
cooperative coevolution a better static optimizer, we con-
centrate our study on beginning to understand why CCEAs
appear to perform well in spite of this in multiagent learning
settings. We believe coevolution’s success in these domains
is a result of its ability to find solutions that have certain
specific robustness properties. In particular, coevolution is
capable of producing teams of agents that perform well even
when some subset of the team does something unexpected,
and this is preferable to more optimal, yet brittle teams,
that cannot admit such changes.

2.2 Robustness Analysis
The evolutionary computation community has tended to

avoid rigorously defining “robustness” in part because speci-
fying a particular definition for the word can be troublesome.
Is an agent that performs well on average in many situations
robust? Is an agent that avoids some kind of catastrophic
failure when faced with change robust? Is the agent robust
only when it always performs well in a subset of similar, but
somewhat different situations? If the solution is robust to
local changes, but not to more global changes, is it still ro-
bust in the general sense of the word? In the midst of these
many questions, one thing is clear: There are many valid
interpretations of the word “robust”. What is often unclear
is which one a particular researcher is meaning to convey.

Indeed, the Santa Fe Institute has recognized the com-
plications surrounding this topic and established a program
on robustness [8]. This program provides a loose forum for
a shared discussion and bibliography of works studying is-
sues surrounding robustness (e.g., the differences between
notions of “stability” of a system and “robustness” of a sys-
tem, [9]); however, though the program admits the difficulty
in defining robustness, its response to this challenge is to
collect many definitions rather than to consolidate them.

The operations research community has taken the oppo-
site, comprehensive approach in a field they call robustness
analysis (RA) [20]. The idea is to produce a framework for
rigorously defining robustness in many circumstances. RA
asserts that when one analyzes robustness, one is typically
attempting to justify the conclusions (solutions) of some
model (problem) such that it holds for other “reasonable”
combinations of parameter values of that solution. One first
obtains a specific set of parameter values that constitute a
solution to a problem, then one attempts to see whether
or not those parameter values are somehow “central” in the
sense that certain changes in the parameter values still result
in something acceptable.

Robustness analysis typically partitions the domain space
of potential solution into two subspaces. The first subspace
is often referred to as the space of design parameters, the
second control parameters. When we talk of robustness,
we generally speak of the relationship of parameter values
between these two subspaces: A specific design parameter
value may or may not be robust over some set of control
parameter values, or vice-versa [13]. When we are assessing
the robustness of a particular design parameter value by con-
sidering the entire control parameter subspace, we use the
term perfectly [20] or absolutely [4] robust. Alternatively, im-



perfect robustness may employ measures of distance in the
domain space, or probability of inclusion in the comparison
set. In other words, one might intend the term “robustness”
to apply globally across some subspace, or one might intend
a more local meaning of the word.

However the set of control values are chosen, a particular
combination of control parameter value and the fixed design
parameter value contributes to robustness if they obey some
kind of robustness criterion. There are many such criteria,
such as those resulting in “similar” values determined by
some distance metric [21], or those that result in the optimal
performance in the worst-case pairing [10], or those that
obey a kind of game-theoretic min-max regret rule [13]. In
general, this criterion is simply a rule to be applied for each
comparison; it can be any rule.

Establishing a clear framework, as has been done to some
extent in the OR literature, and as we will attempt to do
in this paper for coevolutionary computation, allows re-
searchers to be clear what they mean by the term in their
situation. Moreover, it permits outside researchers the abil-
ity to consider whether or not the proffered definition has
any value to their own research.

3. ROBUSTNESS IN COEVOLUTION:
A FRAMEWORK

As in the field of RA, we find it useful to concentrate
on two key elements of the process of defining robustness.
First, the process involves partitioning the search space in
such a way that one could discuss the robustness of one set of
variables with respect to another. Second, a rule is provided
for comparison purposes. Robustness of a value in the first
partition is determined by using that rule to compare the
value against all, or a subset of all values in the second set.

While this partitioning of the argument space could be
done in any way, in a multipopulation coevolutionary setting
there is, of course, a very natural way to determine such a
partitioning: along the population boundaries. Recall that a
solution for a compositional problem is a composite of com-
ponents assembled from each population. We divide the
process of determining robustness into stages, where each
component in a particular solution is evaluated for robust-
ness with respect to the other potential components.

For simplicity and exposition, we consider only two-pop-
ulation CCEAs (thus only two components), but it should be
clear that the framework can easily be extended to include
coevolutionary systems with more than two populations. We
start by considering a particular component.

Definition 1. Let A = {a1, a2, . . . , an} and B =
{b1, b2, . . . , bn} represent the set of possible component val-
ues for the first and second population, respectively.

We call C : A × B 7→ {0, 1} a robust criterion. We say
that a particular ā is perfectly robust over B with respect
to the robustness criterion Ca if ∀bj ∈ B, Ca (ā, bj) = 1.

We call Da (ā, B) =
P

j Ca(ā,bj)
|B| the degree of robustness

of ā over B with respect to the robustness criterion Ca.

Though the above definition is from the perspective of the
first component, it is easy to see that we can reverse the two
components and apply the same logic to get Db (bj , A), the
degree of robustness of bj over A with respect to Cb. When
the partitioning and C are fully specified, these definitions
allow a researcher to clearly and precisely define what it

means to say that a particular component is more robust
than another component: it is more robust if its degree of
robustness is higher, i.e., component value ai is more robust
than aj if Da (ai, B) > Da (aj , B). Of course, in practice one
will not have access to the entire space of potential compo-
nents with which to compare, and some sampling method
for estimating the degree of robustness will be required.

Of course, rather than a binary robustness criterion, we
might have used a parametric function of some kind. Such a
function would have the advantage of retaining information
about relative objective value differences; however, here we
will remain consistent with the OR literature and consider
robustness criteria to be merely indicator functions.

The trick in using this framework is the selection of an
appropriate C function. The robustness criterion may be any
condition, but the usefulness of the criterion for the purposes
of analysis or comparison is limited to the degree to which
the criterion has any real meaning to researchers. Still, a
precise instantiation of a robustness definition will help focus
what is being studied, and permit other researchers to agree
or disagree with the utility of the definition.

3.1 A Practical Partitioning
The above framework assumes a partitioning along pop-

ulation boundaries, but in general the ideas discussed here
are not limited to such partitioning. It is only important
that the division is made and that the researcher is clear
about the variables being compared. However, we restrict
our studies to population-based partitions for several rea-
sons. First, since the engineer has already made partition-
ing decisions surrounding the relationships of the compo-
nents by their very decomposition in the CCEA representa-
tion, it is reasonable to assume that these same representa-
tional boundaries reflect good choices for robustness analysis
purposes— if for no other reason than they are commensu-
rate with what the engineer thinks is important (rightly or
wrongly). Second, given that our problem domains of in-
terest are multiagent learning tasks, it makes sense to de-
compose such problems along the agent boundaries both for
representational and robustness analysis purposes. That is,
the robustness we care about is primarily the robustness of
team performance to changes in individual team members.

3.2 Global vs. Local Robustness
Here, we consider robustness from a global perspective,

eschewing the idea of restricting our consideration to local
perturbations only. While a global definition for robustness
may seem counterintuitive, it is often the most practical. For
one thing, there is generally no real topology connecting a
given space of strategies (genotypes) outside of the EA itself.
Once we have obtained a solution, the connectivity of the
strategy space established by genetic operators is irrelevant.
Although we are often interested in a topology that allows us
to measure robustness over a set of “reasonable” changes to
our strategies — changes we can expect when the solution is
deployed— defining what such changes are in terms of rep-
resentation of behaviors is difficult and beyond the scope of
this paper. It suffices to say that topologies implied by these
considerations may be radically different than those imposed
by effective search operators. In existing mathematical mod-
els of the CCEA, on which much of our intuition is based,
there are no simple local relationships between strategies,
and we will not assume any here.



Table 1: This a simple example of a payoff func-
tion for a two-component CCEA. In game-theoretic
terms, the solutions (a1, b1) and (a3, b3) are both Nash
equilibria.

b1 b2 b3

a1 5 4 2
a2 4 3 1
a3 2 1 6

3.3 A Practical Robustness Criterion
Using the above framework, we can define a simple and

natural notion of robustness helpful for other studies in our
lab. We will concentrate on defining robustness from the
perspective of the first component; robustness of the sec-
ond component follows naturally by symmetry. Given an
objective function f : A × B 7→ R, we choose the following
definition for Ca.

Ca (ā, bj) =

(

1 if f (ā, bj) ≥
P

i

f(ai,bj)
|A|

0 otherwise

The following example should help make this idea more tan-
gible. Consider the simple two-player 3 × 3 payoff shown in
Table 1. Here there are components A and B, which have
access to the potential values {a1, a2, a3} and {b1, b2, b3}, re-
spectively. There are two pure Nash equilibria, with values
5 and 6, respectively. Considering each B component value,
we compute the average across all A values as {3.6̄, 2.6̄, 3}.
From this we can compute the degrees of robustness of a1

and a3 as 2
3

and 1
3

respectively — and symmetrically we can
perform the same computations from the perspective of the
B component. So, while (a3, b3) obtains the optimal objec-
tive function value, (a1, b1) has better support from other
component values and is in that sense more robust.

The definition we provide above asserts that we believe a
particular ā component value to be robust if it maximizes
the number of pairings with B component values that have a
better than average performance across all possible A com-
ponents. We believe this to be a meaningful and poten-
tially quite useful definition for robustness for many set-
tings, multiagent learning in particular, because it reflects
the ability of the ā component to perform reasonably well
in an environment in which the B component with which it
is paired may change over time.

4. EMPIRICAL ANALYSIS

4.1 Max of Two Quadratics Problem Domain
To help illustrate the relationship between CCEAs and

our notion of robustness, we use the class of problem do-
mains known as MaxTwoQuadratics (MTQ) [14, 23]. The
MTQ domain can be seen as a kind of problem generator
capable of producing anything from very simple to very chal-
lenging problem instances. At a high level, the traditional
MTQ can be simply described as the maximum of two, two-
dimensional functions, max{f1, f2}, where f1 and f2 are two
quadratic polynomials. The relative positions, heights, and
widths of the peaks are parameterized, and particular in-
stances of the problem can be produced by specifying these
parameters. We label the peaks 1 and 2 and specify the
heights and widths of the peaks with the parameters H1,

H2, S1, and S2, respectively. The position of the first peak
is located at (x̄1, ȳ1), the second at (x̄2, ȳ2).

f1(x, y) := H1 ·
h

1 − 16
S1

(xi − x̄1)
2 − 16

S1

(yi − ȳ1)
2
i

+ K

f2(x, y) := H2 ·
h

1 − 16
S2

(xi − x̄2)
2 − 16

S2

(yi − ȳ2)
2
i

+ K

MTQ(x, y) := max {f1, f2, 0} (1)

MaxTwoQuadratics can, of course, be viewed simply
as an optimization problem; however, if we consider each
dimension of the problem as representing strategies for dif-
ferent agents on a team with 2 members, MTQ may also be
seen as defining a game payoff function for an abstract multi-
agent problem. By viewing it in this way, we can begin to
explore the degree to which traditional CCEAs are capable
of finding robust solutions to similar types of problems.

In this paper, we are concerned mainly with the relative
widths of the peaks, so we position the peaks at

`

1
4
, 1

4

´

and
`

3
4
, 3

4

´

, with heights H1 = 50 and H2 = 150, K = 250.
The idea is to produce two peaks at diagonal corners of the
unit rectangle, a suboptimal peak (f1) and an optimal peak
(f2). In game-theoretic terms, this produces a problem with
two pure Nash equilibria, or two potential solutions to the
problem. By controlling the relative widths of these two
peaks (s1 and s2), we will be able to indirectly affect the
degree of robustness of these two key potential solution sets.

4.2 Analytical Intuition
An appealing abstract mathematical model for coopera-

tive coevolution can be drawn from the biology literature:
Evolutionary Game Theory (EGT) [11, 6]. EGT provides
a formalism based on traditional game theory and dynam-
ical systems techniques to analyze the limiting behaviors
of interacting populations under long-term evolution. For
specifics about applying EGT to the analysis of CEAs, see
[5, 23]. In this paper, we will use this model only to provide
some intuitional validation that simple, idealized CCEAs ex-
ploit the above robustness property. We begin with a brief
description of the mathematical model —readers interested
in more details should consult the available literature.

In a two-population EGT model, a common way of ex-
pressing the rewards from individual interactions is through
a pair of payoff matrices. As it turns out, the particular
class of CEAs in which we are interested have a certain kind
of symmetric property in the payoff in the sense that when
individuals from the first population interact with individ-
uals from the second, one payoff matrix A is used, while
individuals from the second population receive rewards de-
fined by the transpose of this matrix (AT ). In our the-
oretical exploration of EGT in this paper, we will use an
infinite population. Thus, a population can be thought of
not as a set of individuals, but as a finite-length vector ~x

of proportions, where each element in the vector is the pro-
portion of a given individual genotype (or strategy) in the
population. The proportions in a valid vector must sum to
one, and all legal vectors make up what is commonly known
as the unit simplex, denoted ∆n, where n here is the num-
ber of distinct genotypes possible in the first population,
~x ∈ ∆n : xi ∈ [0, 1],

Pn

i=1 xi = 1. In a two-population
model, the domain space of the system is a Cartesian prod-
uct of two such simplexes, ∆n×∆m, where m is the number



of distinct genotypes possible in the second population. Here
we assume, without loss of generality, that n = m.

Formally we can model the effects of evaluation and pro-
portional selection over time using a pair of difference equa-
tions, one for each population. The proportion vectors for
the two populations are ~x and ~y respectively. Neglecting the
issue of mutation and breeding, concentrating only on the
effects of selection, we can define the dynamical system of a
two-population symmetric coevolutionary algorithm as:

x
′
i =

»

(A~y)
i

~x · A~y

–

xi (2)

y
′
j =

" `

AT ~x
´

j

~y · AT ~x

#

yj , (3)

where ~x ′ and ~y ′ represent the new population distributions
for the next generation. This formalism assumes a variety of
things about the underlying algorithm it models. First, it is
assumed that an individual’s fitness is assessed through pair-
wise collaborations with every member of the cooperating
population. We call this idea complete mixing. Second, the
modeled algorithm employs fitness proportionate selection
and does not consider the effects of genetic operators. Fi-
nally, the model assumes that both populations are updated
in parallel from the state of their previous generation.

Dynamical systems analysis has provided a fair amount of
insight regarding the fixed points in this system and their
stability. For example, the basis vector associated with the
maximal payoff value is a stable attracting fixed point of
the system. In particular, it is a Nash equilibrium: a set of
collaborating individuals that has the property that if any
one individual is changed, the net reward for all of them
will decrease. However, it is also the case that there can be
other suboptimal Nash equilibria that attract trajectories
[25]. Indeed, in a CCEA it is possible that most, if not all,
trajectories may be pulled toward these suboptimal points.
In contrast, trajectories of a simple EA with fitness propor-
tionate selection in the ideal infinite population model will
always be attracted to the basis vector associated with a
unique global maximum [22].

Formally measuring the sizes of the basins of attraction of
limiting behaviors of this dynamical system is difficult; how-
ever, we will estimate this information empirically using rain
gauge measures [24] in the following way. An initial point is
selected uniformly at random from the product simplexes,
a trajectory through the space is computed beginning with
the initial point and iterating the system model some large
number of times, then the limiting behavior of the trajec-
tory is examined. In our case, all trajectories move to the
basis vectors, so we maintain a histogram corresponding to
these points. If the trajectory seems to have converged “very
close” to a particular basis vector2, we increment its value
in the histogram. We then repeat this process some large
number of times and compute the ratios of the convergence
for each basis vector.

We used this method to examine the behaviors of the two-
population EGT model on the two-component MTQ prob-
lem under varying conditions affecting the relative widths
of the two peaks. In this case, there were eight possible
component values for each population. Obtaining trajecto-

2We consider “very close” to be a Euclidean distance of less
then 10−4 in the ∆n × ∆n space.

Table 2: Degree of robustness (DoR) measures and
EGT rain gauge measures (BOA Size) for different
instances of the MaxTwoQuadraticsproblem.

s1 s2 Coverage DoR 1 DoR 2 BOA Size

0.5 2.0 0.2656 0.375 0.750 0.0674
1.0 1.0 0.5625 0.500 0.625 0.3526
2.0 0.5 0.7656 0.750 0.500 0.6578
4.0 0.25 0.9219 0.875 0.375 0.7164

ries from the analytical model is intractable for very large
spaces, but by using a scaled-down version of the problem,
we are able to compute the degree of robustness exactly for
the solutions associated with the two optima. We allowed
the model to iterate 2000 times for each random initial con-
dition and performed this study for 5000 independent initial
points. Table 2 shows relevant parameters for instantiating
the problem, as well as relevant measures about the sub-
optimal peak (f1): the area under the peak (Coverage3),
the computed degree of robustness for solutions at the sub-
optimal peak (DoR 1 ), the computed degree of robustness
for solutions at the optimal peak (DoR 2 ), and the ratio of
random initial conditions attracted to the peak (BOA Size).

The important thing to note about these results is that
there is strong relationship between the robustness measure
we defined in the previous section and the relative size of the
basin of attraction of the system. Evidently, trajectories in
the formal model of a traditional CCEA are attracted to
solutions that obey a robustness property that is at least
fairly similar to the one we’ve defined.

4.3 Experimentation with Real CCEA
The previous subsection used validation studies on a for-

mal model of coevolution to gain intuition about the nature
of robustness as we are measuring it and its effect on the
dynamics of a coevolutionary algorithm. Here we use an
experimental framework to justify the hypothesis that the
run-time trajectories of real CCEAs are attracted by robust
solutions, while in traditional evolutionary computation this
is not necessarily so.

4.3.1 Experimental Setup
We divide our experimental landscape broadly into two

categories: experimental groups involving studies of a CCEA
and groups involving studies of a traditional EA. Both algo-
rithms use a real-valued representation with Gaussian mu-
tation and fitness proportionate selection. Mutation utilizes
a separate standard deviation associated with each gene of
each individual in the population, where σ ∈ [0.05, 0.5] and
is initialized to 0.5. As in [1], these distributions are adapted
using the following procedure. Every generation a value τ

is produced for each individual as follows:

τ = Gauss(0,
1√
2n

),

where n is the number of genes. Then, for each individual,
the σ associated with each of its genes is updated with the

3Here, the area can be computed exactly by enumerating the
8 × 8 space. In the more realistic experiments that follow,
it is estimated using a discrete sampling grid.



equation:

σ
′
i = σie

τ+Gauss(0, 1√
2
√

n
)
.

The EA trials used a population size of 100 and were run
for 200 generations, while the CCEA trials used two popu-
lations each of size 100, but were run for only 100 genera-
tions for consistency in the total number of evaluations. The
CCEA represents each variable of the optimization problem
separately, one per population, and chooses a single random
collaborator from the alternate population each evaluation.
The populations were evolved in sequential iteration.

For each of these algorithms, twelve experimental groups
were created, one for each of twelve different instances of
the MTQ problem produced by ranging the variables s1 ∈
{1.0, 2.0, 4.0} and s2 ∈ {0.25, 0.5, 1.0, 2.0}. The other pa-
rameters of MTQ remained consistent with the values stated
above. There were 50 trial runs for all groups.

4.3.2 Examining Convergence Results
To get a sense for how attractors in the problem affect

convergence results of real algorithms, we need two pieces
of information: What is the ratio of runs that converge at
or near the suboptimal peak, and what is the robustness of
that peak. In the former case, we determined to which peak
the best-of-final-generation solutions were closest by simple
Euclidean distance in the domain space. In the latter case,
we elicited a sample 128 × 128 payoff matrix and computed
an approximation of the robustness at each peak4, paying
particular attention to the local peak. The following ta-
ble shows these robustness results for each of the problem
instances. Each cell contains a pair, the first value in the
pair refers to the approximate robustness value of potential
solutions at the suboptimal peak, the second refers to the
optimal peak. The values are rounded to two decimal places.

Table 3: Robustness approximations for two poten-
tial solutions to different MTQ problem instances
(peak 1, peak 2).

s2

0.25 0.5 1.0 2.0

1.0 (0.66, 0.38) (0.61, 0.48) (0.54, 0.54) (0.46, 0.61)
s1 2.0 (0.85, 0.33) (0.67, 0.45) (0.56, 0.52) (0.48, 0.59)

4.0 (0.88, 0.28) (0.75, 0.40) (0.57, 0.49) (0.48, 0.58)

Here some care is needed since there are multiple effects
of changing the aforementioned problem parameters. One
important effect is that the coverage of the two peaks in
the domain space is greatly altered. In the extreme cases,
it produces problems in which the suboptimal peak domi-
nates a large percentage of the domain of the landscape and
can affect the algorithms because of simple initialization is-
sues. It is likely both algorithms will be affected by such
issues, and it is also the case the coverage and robustness
are reasonably well correlated. To protect against this com-
plicating our analysis, we include coverage as a variable in
our statistical comparisons. We approximate the coverage
of the suboptimal peak for each problem instance using the
same 128 × 128 matrix used to approximate robustness at
the two peaks. The following table details this information.
Again, the values are rounded.
4The real algorithms operate in a real-valued space (i.e.,
much larger than 128 × 128). The reduced matrix approxi-
mates the robustness values of the two potential solutions.

Table 4: Domain coverage of peak 1 for different
MTQ problem instances.

s2

0.25 0.5 1.0 2.0

1.0 63% 60% 55% 45%
s1 2.0 86% 80% 72% 60%

4.0 93% 86% 76% 66%

The convergence results for the two algorithms are shown
in Figure 1. These scatter plots show the degree of robust-
ness of peak 1 on the x-axis (from Table 4) versus ratio of
runs converging to peak 1 on the y-axis for each of the 12 ex-
perimental groups for both algorithms. The CCEA results
are shown as black dots, the EA as grey diamonds.
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Figure 1: Scatter plots showing degree of robustness
versus convergence ratios for each of the 12 experi-
mental groups for both algorithms.

Our hypothesis is that the robustness properties of po-
tential solutions in the problem will affect the result of the
CCEA, while they will have little or no effect on the EA.
To answer this question, we use a simple multivariate re-
gression method considering both variables (robustness and
coverage) as indicators of the ratio of convergence to peak 1,
the suboptimal peak. With 95% certainty, we can reject the
hypothesis that the robustness measure contributes to pre-
dicting the convergence results in the case of the EA; how-
ever, we cannot reject that both coverage and the robustness
measure explain the convergence results in the case of the
CCEA. In other words, in the combined prediction model,
the robustness measure’s contribution is insignificant to pre-
dicting the convergence results in the EA groups, while in
the case of the CCEA, coverage alone is insufficient to ex-
plain the convergence results.

4.3.3 Examining Run-Time Behaviors
In addition to this type of correlation study, it is useful

to consider the actual run-time behavior of the algorithms.
We do this by examining the robustness of the candidate
best solution in the population(s) at each generation for
each algorithm on two particular problem instances. Since
we will now need to be able to estimate the robustness of
an arbitrary candidate solution, and since the practical al-
gorithms search a vastly larger space than the 128 × 128



CCEA

0.
0

0.
4

0.
8 Robustness of solutions at peak 1

Robustness of solutions at peak 2

EA

0.
0

0.
4

0.
8 Robustness of solutions at peak 1

Robustness of solutions at peak 2

0k 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

Evaluations

R
ob

us
tn

es
s 

E
st

im
at

e

Robustness on MTQ with s1=2,  s2=0.25

Figure 2: Run-time robustness results for the CCEA
(top panel) and EA (bottom panel) on the MTQ
problem with s1 = 2.0, s2 = 0.25. Curves represent
average estimated robustness of the x component
over 50 runs. The dashed lines show the robustness
of the potential solution at each peak.

matrix we used to compute the approximate robustness of
known potential solutions at the two peaks, we now need
to estimate the robustness of candidate solutions considered
by the search algorithms during the run. We do this by
selecting the best individual from each generation and sam-
pling the space using a discrete 100 × 100 grid. From the
perspective of the x component, we examine its robustness
using this grid in the following way. We pair the value of
x with the first sampled y value and compute its fitness.
We then compute the average fitness of 100, evenly spaced
values of x with that y sample. If the original pairing re-
sults in a greater fitness than the average, it counts toward
the robustness of the x component value. We do this for
all 100 sampled values of y and compute the ratio of the
samples that meet the criterion. We can also perform the
complementary and symmetric process for computing the
the robustness of y component values.

Above we see the results of runs on the s1 = 2.0, s2 = 0.25
and the s1 = 1.0, s2 = 0.5 MTQ problem for each of the
two algorithms. We selected these two examples because,
while they do not represent extreme values of the space of
our MTQ problem instances, they do illustrate two different
situations: One in which the robustness of the two peaks
is very different and one in which they are much closer,
though, in both cases the robustness of the solution at peak
1 is higher. The curves in the graph are produced by calcu-
lating the estimated robustness of the best current solution
from the perspective of the x component at each generation
and averaging this value across 50 independent trials. We
provide points of reference by plotting the values reported in
Table 4, the robustness approximations of the potential solu-
tions at each of the two peaks, as labeled horizontal dashed
lines in the graphs. We also examined the y component, and
the results (not shown) are consistent with what is shown.

From these graphs, it is clear that the CCEA is exploit-
ing the robustness property during its search. The degree
to which the EA is doing so is unclear. While there is some
minimal improvement during the early stages in Figure 2,
this improvement may (again) have more to do with an-
cillary initialization effects due to other properties affected
by the change in the s1 and s2 parameters. In any event,
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Figure 3: Run-time robustness results for the CCEA
(top panel) and EA (bottom panel) on the MTQ
problem with s1 = 1.0, s2 = 0.5. Curves represent
average estimated robustness of the x component
over 50 runs. The dashed lines show the robustness
of the potential solution at each peak.

in all of the cases we examined, there is either no progress
toward a greater robustness value in the EA, or there is a
minimal progress made initially that levels out quickly after
initialization. Save for extreme cases, in all experiments we
examined, the CCEA made constant progress against the
robustness measure.

5. CONCLUSIONS AND FUTURE WORK
While CCEAs may not be suitable for many static func-

tion optimization problems, in our experience they have
been very useful for the kinds of multiagent learning prob-
lems we face in our lab. The algorithms we use seem appro-
priate for finding behaviors for team members that result
in good, though not necessarily optimal performance. More
importantly, the performance of member behaviors often ex-
hibit a kind of robustness to changes in other team members.
Given that this observation is consistent with, but not ex-
plained by, the prevailing theory for CCEAs, we decided to
take a closer look at why this might be so.

To begin, we took inspiration from existing literature in
the operations research community to help clarify what might
be meant by “robustness”. We provided a general frame-
work, based on two key elements that allows researchers
to instantiate a specific and clear definition of robustness
for their situation. First, the solution space for the prob-
lem is partitioned into two subspaces. Second, a criterion
is provided with which to compare variations of potential
solutions. With these pieces, one can discuss the degree of
robustness of a particular value in one subspace over changes
in the other subspace with respect to the specified criterion.
We provided a particular criterion asserting that a given
component value in the first partition is robust if it maxi-
mizes the number of pairings with component values from
the second partition that have a better than average perfor-
mance across alternative strategies from the first.

Next, we looked to a known evolutionary game theoretic
dynamical systems model of an idealized CCEA for intu-
ition. We found that, unlike traditional fitness-proportionate
based idealized EAs, trajectories in such a system appear to
be attracted to population states that concentrate around



solutions with the robustness property we defined, whether
or not these solutions correspond with optimal objective val-
ues. Given a choice between a the global optimum and an
alternative optimum that has a lower objective value but a
sufficiently high degree of robustness, the idealized CCEA
will more often be drawn by the robust solution.

We implemented an EA and a CCEA and applied them
to a common class of problems from literature. We found
that, while things are as always more complicated in more
realistic settings, even in praxis the robustness property of a
potential solution seems to be a definite indicator of where
CCEAs will converge, while not necessarily being so for the
EA we studied. Moreover, when looking at run-time es-
timates of robustness we noted that the CCEA progresses
toward the optima with a high, though not optimal, objec-
tive value but with a higher degree of robustness, while the
EA tends to favor objective performance with little to no
consideration for the property.

While we recognize that these results are only the first
steps, we believe it is constructive to view many CCEAs as
optimizers of robustness. Understanding what this entails
will help us apply the algorithms more effectively for prob-
lems where robustness is an important property of the de-
sired solution. We are currently working on a formal math-
ematical proof that the EGT model of the CCEA is, in fact,
drawn to points that maximize degree of robustness. We
will also continue our research by experimenting with more
realistic multiagent problems, offering a more foundational
understanding for how cooperative coevolution solves such
problems.
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