
On the Performance Effects of Unbiased Module
Encapsulation

R. Paul Wiegand
Institute for Simulation & Training

University of Central Florida
Orlando, FL 32826

wiegand@ist.ucf.edu

Gautham Anil
School of Electrical Eng. &

Computer Science
University of Central Florida

Orlando, FL 32826
ganil@cs.ucf.edu

Ivan I. Garibay
Office of Research &
Commercialization

University of Central Florida
Orlando, FL 32826

igaribay@cs.ucf.edu
Ozlem O. Garibay
Office of Research &
Commercialization

University of Central Florida
Orlando, FL 32826

ozlem@cs.ucf.edu

Annie S. Wu
School of Electrical Eng. &

Computer Science
University of Central Florida

Orlando, FL 32826
aswu@cs.ucf.edu

ABSTRACT
A recent theoretical investigation of modular representations
shows that certain modularizations can introduce a distance
bias into a landscape. This was a static analysis, and em-
pirical investigations were used to connect formal results to
performance. Here we replace this experimentation with an
introductory runtime analysis of performance. We study a
base-line, unbiased modularization that makes use of a com-
plete module set (CMS), with special focus on strings that
grow logarithmically with the problem size. We learn that
even unbiased modularizations can have profound effects
on problem performance. Our (1+1) CMS-EA optimizes
a generalized OneMax problem in Ω(n2) time, provably
worse than a (1+1) EA. More generally, our (1+1) CMS-
EA optimizes a particular class of concatenated functions
in O(2lmkn) time, where lm is the length of module strings
and k is the number of module positions, when the modu-
larization is aligned with the problem separability. We com-
pare our results to known results for traditional EAs, and
develop new intuition about modular encapsulation. We ob-
serve that search in the CMS-EA is essentially conducted at
two levels (intra- and extra-module) and use this observa-
tion to construct a module trap, requiring super-polynomial
time for our CMS-EA and O(n ln n) for the analogous EA.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
G.1.6 [Numerical Analysis]: Optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

General Terms
Theory, Algorithms, Performance

Keywords
module encapsulation, runtime analysis, search space bias

1. INTRODUCTION
Many researchers have begun to develop complex encod-

ings that try to exploit known regularities in a problem us-
ing notions like modularity in the representation space [10,
8, 17]. Modular representations permit repeatable and re-
usable components of a candidate solution (modules) to be
embedded into the encoding of candidate solutions, which
can alter the structure of the search space and the perfor-
mance of the EA operating on that space. Indeed, many en-
gineering problems seem well-addressed by algorithms using
representations that make use of such ideas (e.g., multiagent
learning [3]). A useful survey of concepts and definitions for
modular representations appears in [4].

Empirical investigations into modularity have primarily
focused on understanding how regularity in the landscape
affects such representations [10, 15, 8]. Algorithmic design
choices include: how many modules exist, how they should
be composed, whether they can be dynamically discovered
or generated, or whether there is a static a priori list of pos-
sible modules [2, 6]. Proponents of modular representations
highlight, among other advantages, the potential for these
representations to provide greater scalability for increasingly
complex problems.

Theoretical approaches to understanding modularity have
been much more limited and mainly confined to general
investigations of genotype-phenotype mapping [19, 18]. A
more focused analytical study of the effects of module en-
capsulation appeared recently [9], where simple modular en-
capsulations are considered from the perspective of search-
space bias. That is, modular representations can introduce
a kind of distance bias by over-representing some portion of
the search space and under-representing another. As a kind
of baseline, they introduce a representation where solutions
are encoded only by modules and the potential module set

consists of all possible substrings of a certain length (the
complete module set, CMS). The paper proves that, via the
application of a particular distance measure, this leaves the
resulting search space unbiased. The authors focus their
formalism on a static landscape analysis, using empirical
studies to connect notions of representational bias to perfor-
mance based on a well-known informal difficulty measure,
and the experimental results suggest that unbiased repre-
sentations will not impact performance when problem land-
scapes are well-suited to their distance measure.

Here we address the issue of scalability directly by for-
mally examining the performance impact of such unbiased
modular representations. The idea is to extend initial static
investigations of landscape bias by replacing empirical study
with a rigorous runtime analysis of performance. We study
very simple algorithms, variants of the so-called (1+1) EA
[5] in order to focus on our primary questions of representa-
tion, though at least one result generalizes to more sophis-
ticated methods. Additionally, we confine ourselves to this
first, simple modularization using a complete module set as
an introductory step into performance analysis of modular
representations.

We learn that even with a simple problem that appears
quite compatible with the difficulty estimate used in existing
experimental results, representations using unbiased modu-
lar encapsulation can still have provably different perfor-
mance results from an analogous EA. Specifically, we show
that a simple (1+1) EA will outperform our CMS variant
on a generalized OneMax problem. We then generalize this
bound for our CMS-EA to a particular class of aligned con-
catenated functions, providing upper and lower bounds on
such functions. These analyses permit comparisons with tra-
ditional EAs on several problem classes and provide new in-
tuition about modular encapsulation: When problems align
well with the separability of the function, the module length
relative to the problem size of an unbiased modular encod-
ing can have a bracketing effect on the performance scaling
of the EA, constraining what is possible for both the upper
and lower bounds. Additionally, we see how search in the
CMS-EA is essentially conducted at two levels (intra- and
extra-module). This insight enables us to construct a module
trap, which is super-polynomially difficult for the CMS-EA
and quite straightforward for the EA.

The take-home message is that even simple modulariza-
tion schemes for simple algorithms applied to simple prob-
lems generate surprising results and deserves further the-
oretical attention. Runtime analysis can be a useful way
to extend existing efforts to understand the static effects of
representational bias generated by a modularization scheme.

The next section provides the technical background by
formalizing our notion of modular encapsulation and de-
scribing the runtime analysis framework we employ. Sec-
tion 3 describes the two algorithms we consider in this pa-
per and motivates the rest of the discussion by providing a
lower-bound for our CMS variant on generalized OneMax.
Section 4 provides the analysis of the more general class
of aligned concatenated problems and provides bounds for
examples both in and out of that class. The final section
discusses what we conclude from these results.

2. BACKGROUND

2.1 Modular Encapsulation
The formalism for mapping from a modular encoding to

the true problem encoding discussed in [9] is quite general,
and we refer the reader there for that framework. Here we
focus only on a relevant subset of modularization schemes on
which their analysis was conducted and simplify our formal-
ism for the purposes of clarity of exposition. Where possible,
our notation is consistent with both this work and the tra-
ditional runtime analysis literature; however, where this is
confusing, we employ the latter.

We apply our algorithms to pseudo-Boolean problems,
where the domain space consists of binary strings of length
n, f : {0, 1}n 7→ R. We consider a module to be a symbol
that represents some binary substring of fixed length, Mi ∈
{0, 1}lm and use a complete module set (CMS), M, con-
sisting of symbols representing each copy of all such strings
exactly once. That is, M := {M0, . . . , M2lm−1}, where Mj

is the jth binary string of length lm indicated in M.
A potential solution is encoded as a string of module

symbols, which is translated into a binary string by sim-
ple substitution. Before substitution, we write such a so-
lution m := m1m2 · · ·mk, where k is the length of the
modular string and n := k · lm. We write the final solu-
tion string, after substitution, x := x1x2 . . . xn. When it is
useful, we occasionally use the notation x(i) to refer to the
substring corresponding with the ith module of the string,
mi = x(i) := x(i−1)lm+1 · · ·xi·lm .

Examining both an un-encoded binary representation in
conjunction with the above CMS representation, it is easy
to see that there is no difference in the underlying points
of the space being represented. That is, in the final search
space, algorithms employing either representation will have
access to all 2n search points, and none are any more or
less represented than another. A slightly subtler question is
whether or not there are topological changes to the space as
a result of the encoding, and such a question can only be
answered when some kind of distance measure is imposed.

[9] examine the effects of modularization on the space.
They employ Hamming distance to the global optimum to
show that average Hamming distance between the pre- and
post-encoded spaces do not differ when using a complete
module set. In that sense, the encapsulation is unbiased be-
cause the aggregate relationship of underlying search points
to the optimum is unchanged. Biases can be introduced with
more sophisticated choices about module set composition.

That analysis is static, considering only the effects on
the representation space given a distance measure. To say
something about performance of algorithms employing these
schemes, the static descriptions of bias are connected to a
well-known “difficulty” measure in the EC literature, fitness
distance correlation [14], which relates distance to the opti-
mum to solution quality. This difficulty measure is used to
help make predictions about how these bias properties will
perform experimentally.

2.2 Performance & Runtime Analysis
Though it may be informative in certain circumstances,

fitness distance correlation is a poor general predictor for
EA performance [1]. Moreover, the measure is meant to de-
scribe a problem’s“difficulty”and, whether or not it achieves
this, it is clear that what is difficult for an EA using one rep-

resentation may not be difficult for another. It’s instructive
to consider what one wants out of performance comparison.

If performance and scale of performance are of interest, it
is productive to replace the empirical studies following static
analysis of modular representation with runtime analysis of
the first-hitting time of an algorithm to the global optimum.
Here we try to elicit bounds for the expected number of func-
tion evaluations before an EA first evaluates the optimum,
as well as provide bounds on the success probabilities [16,
20]. Since these bounds are typically expressed as function
classes dependent on the size of the problem, and since one
of the advantages modular representations are believed to
have is scalability [4], determining such bounds as a func-
tion of problem size is particularly useful for further study
the performance of modular representations.

A challenge for those conducting runtime analysis as a
follow-on to existing work is the tendency for researchers to
neglect to specify the functional relationship between certain
algorithmic parameters and the problem size [12]. In this
case the trouble comes from lm: Is it constant? Does it
grow linearly with n? For our analysis, we primarily focus
on lm := lg n; our reasoning follows.

If the length of the module string is constant in n then
there is no real difference between a modular encapsulation
and a representation that uses a non-binary alphabet. Of
course either can impact performance and may be worthy of
study, but our view is that true “modular” representation is
one in which the modules have some hope of incorporating
useful sub-portions of (some) problems, and that suggests
some non-constant relationship to the size of the problem. If
the length of the module string is linear in n then the size of
M grows exponentially as n increases, which is impractical
if an implementation explicitly stores M (though often it
isn’t necessary to do so). With our choice, the size of the
module set grows linearly with n, which is a useful property
since it leads to a kind of apples-to-apples compatibility with
the (1+1) EA, which we will discuss later.

Other scaling function classes for lm are possible and inter-
esting, of course,lm :=

√
n in particular. More generally, one

could imagine a class of scaling functions lm := nε, where
ε ∈ [0, 1]. When ε is 0, our CMS-EA is equivalent to an anal-
ogous EA, and when it is 1, our CMS-EA is random search.
A thorough analysis of the effects of the range in between is
beyond the scope of this paper; however, we will keep these
extremes in mind in our discussion.

3. ALGORITHMS ANALYZED
For several reasons, we concentrate our analysis on very

simple evolutionary algorithms, variants of the so-called
(1+1) EA. First, we wish to focus on the question of rep-
resentation rather than other algorithmic details, so it is
sound to consider the simplest algorithm that demonstrates
our points. Second, there are now many theoretical runtime
results for this simple EA, so concentrating on this provides
the most opportunity for comparison. Still, at least one of
our bounds is quite general, and we will discuss the extent
to which it will include other algorithms.

3.1 Pseudocode
Without loss of generality, our algorithms are described

for maximization. We describe them without stopping cri-
teria since our interest is in the expected time until the algo-
rithm first evaluates a global optimum (first-hitting time).

The (1+1) EA begins with a single random parent, pro-
duces a child by the standard bit-flip mutation operator, and
replaces the parent with the child if it is at least as good.

Algorithm 1 (1 + 1) EvolutionaryAlgorithm

1. Choose x ∈ {0, 1}n, uniformly
2. t := 0
3. Mutation: Create x′ ∈ {0, 1}n by copying x
and independently flipping each bit with probability
min{1/n, 1/2}
4. Selection: If f(x′) ≥ f(x) then set x := x′

5. t := t + 1
6. Continue at line 3

Our CMS variant functions similarly, except that it op-
erates on the modules directly and only decodes module
strings for evaluation. It maintains an individual that has k
modules, produces a new individual by applying mutation,
then decodes the two module strings into binary strings and
evaluates their fitness. If the child is at least as good as the
parent, the child’s module string replaces the parent’s.

The important observation here is that the mutation op-
erator must change to accommodate the modular represen-
tation. We use the same operator described by [9, 7]: Each
position has an independent probability of having mutation
applied to it, 1/k. However, now we choose a new module
from the module set uniformly at random. This means that
there is some (low) probability that the very same module
will be selected, which essentially implies that the effective
mutation rate is somewhat smaller than 1/k.

Algorithm 2 (1 + 1) CMS-EvolutionaryAlgorithm

1. Choose m ∈Mk, uniformly
2. t := 0
3. Mutation: Create m′ ∈Mk by copying m, then
for Each m′

i do
Decide if mutating with probability min{1/k, 1/2}
If mutating, choose a new m′

i ∈M, uniformly
end for
4. Mapping: Decode m → x, m′ → x′ by substitution
5. Selection: If f(x′) ≥ f(x) then set m := m′

6. t := t + 1
7. Continue at line 3

3.2 Why it Matters: A Tale of Generalized
OneMax

Since both modular bias and fitness distance correlation
are measures of search point distance to the global optimum,
and functions from the simple generalized OneMax class
are defined in terms of the very same distance measure, an
easy inference to draw is that unbiased modular encodings
will not impact the performance of the algorithm on such
problems; however, this is not true.

Consider the generalized OneMax problem:

OneMax(x, x̂) := n−
nX

i=1

|xi − x̂i|,

where x̂ specifies a target string (global optimum).

Theorem 1. The expected first-hitting time for the (1+1)
CMS-EA on generalized OneMax is Ω

`
2lmk ln k

´
if it is

initialized with no modules solved.

Proof. We examine the event when mutation produces a
specific module symbol that decodes to the correct substring
in the target string, referring to such an event as having con-
sidered the solution to that module. For this to happen for
a module position, we must both have a mutation event and
that event must produce the correct value, the probability
for which is 1

k
· 1

2lm
. The probability that this event does

not happen in t− 1 steps is:„
1− 1

2lmk

«(t−1)

The probability all k modules have been considered is
1−

„
1− 1

2lmk

«(t−1)
!k

Let (t − 1) :=
`
2lmk − 1

´
(ln k − ln ln n). Using the well-

known inequality (1− 1/n)(n−1) ≥ 1/e, we have:„
1− 1

2lmk

«(2lm k−1)(ln k−ln ln n)

≥ e−(ln k−ln ln n) =
ln n

k

So the probability that the algorithm will have considered
all module symbols needed in the solution string within t−
1 steps is at most

`
1− ln n

k

´k ≤ e− ln n = 1/n; thus, the
probability that it takes at least t steps is 1 − 1/n. Noting
that

E{T} =
X

t∈[1,∞]

Pr{T ≥ t} =
X

t∈[1,∞]

t · Pr{T = t},

we have

E{T} ≥
“
2lmk − 1

”
(ln k − ln ln n)

„
1− 1

n

«
= Ω(2lmk ln k)

The proof shown above is a special case of the work in
[5] and follows their method. The (1+1) EA solves this
problem class in Θ(n lg n) time while our CMS variant is

Ω
“

n2

lg n
ln(n/ lg n)

”
= Ω(n2) when lm = lg n, provably worse.

Obviously this difference is relatively minor; however, it
serves to motivate the analysis below. The Hamming dis-
tance correlation of search points to the optimum is an ideal
distance measure for this landscape. Yet in spite of the fact
that the CMS is unbiased according to that measure, these
two algorithms scale by different function classes. At issue
is the effect of the growth in the module length on the mu-
tation operator, as we shall see.

4. CONCATENATED FUNCTIONS
As in [5], the lower bound we just presented is much more

general than OneMax. Indeed, it holds (perhaps loosely)
for any function with a unique global optimum —one prov-
ably worse than that of the (1+1) EA when lm := lg n.
The reason for this is that modularity forces a change in
the mutation operator that induces a different topology on
the underlying space than does bit-flip mutation. Since the
length of the module string increases with n, the probability
of mutating to the module containing the correct substring

of the solution decreases. For any non-constant lm, this
lower bound must be higher than Ω(n ln n), so the scale of
lm has a kind of “raising the bar” effect on what is possible
for a lower bound.

Also, note that the ratio of the length of the modules to
the length of the candidate solution string shrinks as n in-
creases. Since the number of modules in the module set
is linear in n, there is a kind of underlying compatibility
with the (1+1) EA: given that a mutation event occurs,
the correct module can be found with probability 1/n. The
difference is in what the algorithms do with the informa-
tion inside a module—the (1+1) EA treats all information
the same and ignores substring boundaries, while the (1+1)
CMS-EA ignores most information inside the substring and
concentrates search on assembling the useful modules. In-
deed, the algorithm is performing two simultaneous searches:
a mutation/section based search of useful modules and an
essentially random search to find the correct module values.

This observation leads one to think naturally of functions
in which this dual-search notion is exploited, where the prob-
lem itself is composed of pieces, so-called concatenated func-
tions. We define a class of generalized concatenated func-
tions below, using the same notion of generalization we did
for the OneMax problem above:

Definition 1. Let x̂ ∈ {0, 1}n be the unique global opti-
mum of some function f : {0, 1}n 7→ R. We partition all
search points, x ∈ {0, 1}n, into r pieces each of length lr
such that x(i) := x(i−1)lr+1 · · ·xi·lr . Given some function

g : {0, 1}lr × {0, 1}lr 7→ R, we define a generalized concate-
nated pseudo-Boolean function by

f(x, x̂) :=

rX
i=1

g
“
x(i), x̂(i)

”
Further, when lr = lg n, we refer to such functions as log-
separable concatenated.

Since we require f to have a unique global optimum and
that it be composed of identical functions operating over
different portions of the solution string, g must also have
a unique global optimum. Also, since the g function might
itself be a linear combination of subordinate functions, the
log-separable concatenated stipulation does not restrict the
class to only functions that are precisely separable on lg n
boundaries, but to those that are at least separable along
such boundaries (e.g., the generalized OneMax just dis-
cussed is such a function). In fact, there are many func-
tions that can fall into this class (e.g., concatenated Trap
and Clob, discussed below). Finally, while we have conve-
niently arranged our notation to match the definition for the
module boundaries of the CMS-EA offered above, it’s clear
this needn’t be so. The bit positions themselves might be
presented in a different order and the underlying function
would be the same (if the corresponding positions in x̂ were
also re-ordered in the same way).

This is important because the CMS-EA makes an implicit
assumption about where good module boundaries may be,
much as compositional coevolutionary algorithms do [13].
When the module boundary and the boundaries of the pieces
of the log-separable concatenated function are the same, we
consider the algorithm’s modularization to be aligned with
the problem. Below, we consider the general case of when
modules are aligned with concatenated functions, as well as
a counter example for CMS-EA that is outside this class.

4.1 Module Alignment
The purpose here is to show how the bounds on the CMS-

EA’s runtime behavior applied to the class of generalized
concatenated functions is affected when the modularization
is aligned with the problem. Consequently, we intentionally
ignore the details of the component function for the underly-
ing pieces except to insist it have a unique global optimum.

Theorem 2. The expected first-hitting time for the (1+1)
CMS-EA on a function from the class of generalized con-
catenated functions is O

`
2lmkn

´
when the modularization

is aligned with the problem.

Proof. By our definition, using a modularization that is
aligned with the problem implies that lr ≤ lm, so we use lm
in all cases below for simplicity.

We first consider the case where all g(x, x̂) are unique.
Without loss of generality, we consider the values ordered
by their component function value, writing g1 for the max-
imal value of g and g2lm for the minimal value. We pro-
ceed by fitness-based partitions [5], defining 2lmk + 1 levels:

Lij :=
{x| gj−1 · (i + 1) + gj · (k − i− 1)

>
Pk

d=1 g(x(d), x̂(d)) ≥
gj−1 · (i) + gj · (k − i)},

∀i ∈ [0, k − 1], ∀j ∈ [2, 2lm]

LOpt = Lk1 :=

(
x

˛̨̨̨
˛

kX
d=1

g(x(d), x̂(d)) = g1 · k

)
To increase a level, the algorithm must mutate a module

to a value that receives a larger payoff than the current value
without generating deleterious mutations. Though there can
in principle be a large number of combinations of component
function values that result in a particular fitness level, for a
given level Lij , there must be at least one module value at
or below the gj−1 level. We pessimistically assume that the
we must mutate only that module to some larger value. This

occurs with probability at least 1
k

`
1− 1

k

´k−1 j−1

2lm
≥ j−1

e2lm k
.

We must make at most 2lmk such level advances and we
estimate the total time by summing the expected time for
each of such level increases:

E{T} ≤ e2lmk +

2lm kX
j=2

k−1X
i=0

e2lmk

j − 1

= O
“
2lmk2 ln 2lm

”
= O

“
2lmkn

”
Second, we consider the case where there exists j such

that gj−1 = gj . If the levels are defined as above, the fitness
partition size is now zero, and it is possible to move back-
wards. Instead, one can define the fitness partitions so as to
merge levels such that no fitness partition is of size zero. If
this is done in such a way that rows comprising levels of size
zero are repeatedly merged upward into rows above them

until they contain valid points, one can ensure that mod-
ule substrings decoding to the largest possible component
fitness value from g appear only once in a given partition
for each module position, and that all other values are the
same and smaller. Thus, a module mutating between two
points with equal fitness values does not lead to a transition
in fitness partition. The probability of making a transition
is still governed by the rank of the larger value in a partition
for a given module, there are simply fewer rows and hence
fewer fitness partitions than before. Since the probabilities
are no worse and there are fewer steps to make, this case
cannot be worse than the case where all g values are unique.

There is a similar limiting pattern to the upper bound as
we noted for the lower bound: Sub-linear scaling for lm and
lr leads to sub-exponential bounds on this function class,
and there is a kind of “lowering the bar” effect on what is
possible for an upper bound that occurs when this scale is
reduced. Taken together, there is a bracketing on the bounds
for these kinds of concatenated problems determined by the
size of modules when they are no larger than the problem
pieces and the modularization is aligned. This follows nat-
urally from the observation that the algorithm is essentially
ignoring the values within the pieces and simply performing
a traditional search at the module level. What the (1+1) EA
does with bits, the (1+1) CMS-EA does with modules, and
when the additional gradient information provided in those
pieces is helpful for search, the CMS-EA cannot make use if
it. But when that information is harmful or misleading, the
CMS-EA is undeterred. In essence, bracketing results from
the fact that the CMS-EA doesn’t care about g.

Considering the (1+1) EA as an extreme case of the CMS-
EA on linear functions, lr = lm := 1, k = n, our lower
bound result is consistent with the known Θ(n ln n) result
for the 1-separable concatenated function class (generalized
OneMax). At the other extreme, when lr = lm := n, k = 1,
the CMS-EA performs random search, and the our bounds
loosely corroborates this, as well. When lm := lg n, our lower
bound is quadratic and the upper bound is nearly quadratic,
O
`
n3/ lg n

´
.

Our result is general enough to compare with known re-
sults for several function classes. The concatenated Trap
function, where g decreases with the Hamming distance to
its optimum at every point except that optimum, requires
nlg n time for the (1+1) EA if the length of the pieces grow as
lg n. The Clob (concatenated LeadingOnesBlock) prob-
lem, where g is the sum of the left-to-right consecutive b
1-bit blocks, is Θ(nb(n/(br) + ln r)) and so depends heavily
on the size of the block [13]. The CMS-EA can solve in-
stances of both problem classes faster when lr = lg n and
b ≥ 2, as well as many others (of course).

The BuildingBlock function class from [11] is also a
concatenated function, though the analysis from that paper
uses lm :=

√
n. The case of

√
n is particularly interesting

since a simultaneous mutation of lg n bits is not so improb-
able, whereas this cannot be said for

√
n. Here, the running

time of the CMS-EA with lm :=
√

n on functions in this

class could be quite unpleasant, Ω(2
√

nn3/2 lg n3/2).
But for the stated problem classes, the CMS-EA will solve

such problems in nearly quadratic time. We do not sug-
gest that this aligned log-separable concatenation property
is sufficient or necessary for a CMS-EA advantage—there

are sub-classes in this class that are (somewhat) easier or
no harder for a simple EA or other method to solve, and
there very well may be functions on which the CMS-EA is
advantageous that are not log-separable concatenated. But
one clear effect that using such a module scheme has is to re-
duce the possible range of the bounds, and while the bounds
will not be the same for more sophisticated variants of the
algorithm (those with a population, for instance), we spec-
ulate that there will be a similar bracketing effect on what
kind of runtime performance is possible for such problems.

4.2 A Module Trap
Obviously there are many functions for which the CMS-

EA will perform very poorly—the full Trap function, for
instance. Such examples have their place, but a more inter-
esting counter example here can be constructed using the
same observation that helped us understand one class of
functions for which our CMS-EA is reasonably efficient: the
CMS-EA cannot make effective use of the information inside
the modules and has no effective means of searching the re-
lationships between the internal content of the modules.

An obvious way to exploit this search methodology is to
create a trap for the modules, though the underlying in-
formation in the modules contains sufficient information to
solve the problem. We construct such a function class as fol-
lows. First, let Needle be a function that returns 1 when
two given strings match and 0 when they do not. Interpret-
ing Needle as our g function in the above framework allows
us to specify the class of concatenated functions:

Definition 2. Let x̂ ∈ {0, 1}n be the unique global op-
timum of the function CNeedle : {0, 1}n. We partition
search points, x ∈ {0, 1}n into r pieces each of length lr
such that x(i) := x(i−1)lr+1 · · ·xi·lr . We define this by

CNeedle(x, x̂) :=

rX
i=1

Needle(x(i), x̂(i))

We use the following notational short-cuts:

• OM(x) = OneMax(x, x̂)

• ZM(x) = OneMax(x, ¯̂x)

• CN(x) = CNeedle(x, ¯̂x)

• MinOM(x) is short for mini∈[1,k]{OM(x(i), x̂(i))}

Definition 3. Let x̂ ∈ {0, 1}n be the unique global opti-
mum of the function ModTrap : {0, 1}n, ¯̂x be the comple-
ment of x̂, and x ∈ {0, 1}n be a search point. We define

ModTrap(x, x̂) :=8>>><>>>:
n4 if x = x̂
n3 · ZM(x) if CN(x) > 0
OM(x) + n2 if MinOM(x) ≥ ln lg n ∧

CN(x) = 0
n ·MinOM(x) + OM(x) otherwise

Intuitively, each of the two underlying functions, CNee-
dle and OneMax, are concatenated functions and could
be solved efficiently (if the log-separable concatenated and
properly aligned); however, for the combined function, once
a Needle is activated, the function provides information

leading away from the optimum. We also add a minor con-
trivance that prevents backward drift when very close, but
outside of the trap region. It’s useful to see that the ra-
tio of Needle to non-Needle points in the landscape is
quite small and shrinks as n grows, so the problem class is
not that different from OneMax at the bit level when n is
large. Indeed, as we show below, the (1+1) EA will solve
this problem in O(n lg n) time, while the problem is quite
difficult for the CMS-EA.

Theorem 3. The expected first-hitting time for the (1+1)
EA on ModTrap is O (n lg n) if a Needle is never acti-

vated, which occurs with probability 1− o(n−1/3).

Proof. The proof is separated into three parts. First, we
show that after initialization the EA will have at least ln lg n
bits in each piece. We follow by bounding the probability
of activating a Needle before the EA has completed nln lg n

steps. Finally we compute the expected number of steps to
the optimum given that no Needle is activated. Without
loss of generality, we assume x̂ = 1n and ¯̂x = 0n.

Given a bit-flip mutation probability of 1/n, applying
Chernoff bounds we know that the probability of having at
least n/4 one-bits in the complete string is 1 − e−Ω(n), so
we pessimistically assume we have only n/4 1’s to distribute
among the n/ lg n. First, we re-write n/4:

n

4
=

n

4 lg n

„
ln n

lg 2

«
=

1

4 lg 2
· n

lg n
(ln n− ln lg n + ln lg n)

=
1

4 lg 2

„
n

lg n
ln

„
n

lg n

«
+

n

lg n
ln lg n

«
Lemma 17 from [13] provides a generalized form of the

well-known coupon collector’s problem, the expected number
of throws necessary to ensure at least h balls in each of k
bins is Θ(k ln k + kh) with probability at least 1 − 1/

√
k.

For our result, this implies that with a probability at least
1− 1/

p
n/ lg n = 1− o(n−1/3) there are at least ln lg n one-

bits in each piece.
As long as no Needle has been activated in initialization,

there will never be fewer ones after initialization. Moreover,
due to the MinOM condition, the only way to obtain fewer
than ln lg n 1-bits in a given module is to simultaneously flip
all 1-bits to zero. So in the easiest case, the EA must flip
ln lg n bits to activate a Needle, which occurs with proba-
bility at most 1/nln lg n. Since there are r = n/ lg n pieces of
the problem, there are n/ lg n opportunities to do so in each

step, so considering n2 steps gives us n3

lg n
such opportuni-

ties. The probability that there is never a Needle activation

event in that time is
`
1− 1

nln lg n

´ n3
lg n .

If the Needle is not activated, the algorithm proceeds
much like it would for OneMax. The upper bound can be
derived using the common f -based partitions approach for
OneMax since in all cases where a Needle is not activated
it is sufficient to count only steps where precisely one 0 is
flipped to a 1. Using OneMax as a proxy, we have Li :=
{x|
Pn

j=1 xj = i}, 0 ≤ i < n. The probability of advancing a

level is at least (n−i)/ne, so E{T} =
Pn−1

i=0
ne

n−i
= O(n lg n).

The probability that no Needles were activated during
initialization and none were activated before the optimum

was otherwise found, then, is at least:

(1− o(n−1/3) ·
„

1− 1

nln lg n

« n3
lg n

= (1− o(n−1/3))

Theorem 4. The expected first-hitting time for the (1+1)
CMS-EA on ModTrap when the modularization is aligned

with the problem is Ω
“`

2lmk
´k/4

”
if a Needle is activated

before at most 3k/4 modules have been solved, which occurs

with probability 1− e−Ω(k).

Proof. Again, we assume without loss of generality that
the solution is found at the all-1 string, the complement at
the all-0 string. Also, the fact that the modularization is
aligned with the problem implies that lr ≤ lm, so we use lm
in all cases below for simplicity.

We begin by considering the probability that at least one
Needle will have activated in t := 2lmk/4 steps. The prob-
ability that a Needle is activated by a mutation event in a
given position is 1

2lm k
, and there are 2lmk2/4 opportunities

for such a mutation in t steps. So the probability of Needle
activation is at least:

1−
„

1− 1

2lmk

«2lm k· k
4

≥ 1− e−k/4

Next, we bound the probability of having more than 3k/4
solved modules in t steps. The probability of finding a so-
lution substring via a given module mutation event is also

1
2lm k

, and given that there are k opportunities in each step
to create find such a substring, the expected number of such
solving events in time t is 2lmk2/4 · 1

2lm k
= k/4. Applying

Chernoff bounds, we see that the probability that there are

more than 3k/4 solving events in that time is
`
e2/9

´k/4
. Of

course, not all of those events will occur in distinct mod-
ule positions, but the number of solved modules cannot be
more than the number “solving events” encountered in time
t. Thus, the probability that at most 3k/4 solved modules

is at least 1−
`
e2/9

´k/4
.

We consider the first phase of the run to be these first
2lmk/4 steps and bound the probability that by such time
at least one Needle will have been activated and no more
than 3k/4 modules can have been solved:“

1−
`
e2/9

´k/4
”
·
“
1− e−k/4

”
= 1− e−Ω(k)

We consider the second phase of the run to be the re-
maining steps required to solve the problem once a Needle
has been activated. Once this occurs, the algorithm cannot
select an individual with fewer (or no) Needles unless it
simultaneously flips all remaining unsolved modules. In the
best case, there are at least k/4 of these modules. The prob-
ability of mutating all k/4 of these modules to the solution

substring at the same time is at most Ω(2lmk)−k/4 so the

expected waiting time for such an event is
`
2lmk

´k/4
.

Adding the time for the first phase to that of the second

phase, we get 2lmk/4 +
`
2lmk

´k/4
= Ω

“
(2lmk)k/4

”
.

The (1+1) EA performs reasonably because it is able to
use the intra-piece information to scale the Hamming levels
to the solution before it has an opportunity to fall for the
trap. The (1+1) CMS-EA is not so lucky. When lr = lm =

lg n, the lower bound is Ω
“
(n2/ lg n)n2/4 lg n

”
. Because it

cannot make use of the intra-block information, it must wait
to assemble solved blocks. Unfortunately, it is very unlikely
to solve all the modules before falling for the trap—and
once in, it cannot easily escape.

5. CONCLUSIONS
In this paper, we provide a deeper look at the performance

effects of modular representations described in [9] that use
a complete module set. That work lays out a rigorous and
careful analysis of how certain kinds of modularization im-
pact search space bias in terms of their distance to the global
optimum, but their discussion of the actual performance im-
pact of such representations is largely empirical. Moreover,
the empirical difficulty measure used implies that unbiased
modular encodings, like those that include all substrings of
a certain length (e.g., the CMS), will not typically impact
search performance.

The goal of our paper is to extend existing analysis of mod-
ular representations to include formal investigations into
their effects on EA performance. We have shown that even
this very simple modularization can alter search performance,
both positively and negatively. This can be true even when
the problem is well-suited for the distance measure used to
measure bias. Indeed, the reason fitness distance correlation
is a poor predictor of CMS-EA performance is because it is
attuned to a landscape topology induced by something like
bit-flip mutation, whereas we now see that mutation in the
CMS-EA leads to a quite different search mechanism.

The main technical difference between their work and
ours centers around the relationship between the size of the
modules and the size of the problem itself. We take the
view that representations that presume constant-sized mod-
ules are really just changing the alphabet, while representa-
tions that use modules in the truest sense must admit some
non-constant relationship between the module length and
the size of the problem. We provide bounds for a general
class of separable concatenated functions to which a prop-
erly aligned simple (1+1) CMS-EA can be applied, focusing
on the subclass where the piece size scales with lg n. This
class includes functions that require arbitrarily large poly-
nomial time, as well as those that require super-polynomial
time for the (1+1) EA. The CMS-EA solves such problems
in Ω(n2), O

`
n3/ lg n

´
time when it’s module size is also lg n.

Moreover, the general bounds relate in an informative way:
Ω(2lmk ln k) and O(2lmkn). The relationship between lm
and n determines a kind of bracketing effect on the bounds
and helps highlight a how the CMS-EA trades off searches
inside and outside modules. We use this intuition to con-
struct a counter example where the CMS-EA requires super-
polynomial time to solve to help clarify this point.

More specifically, the CMS-EA is attempting to conduct
two concurrent but different search processes: one in which
individual genotypic values are being manipulated (intra-
module search) and one in which assemblies of large compo-
nents of the solution string are being explored (extra-module
search). We note the relationship between EAs employing
crossover, EAs employing modular representations, and co-
operative coevolutionary EAs—all of which attempt to con-
duct this kind of two-level search. In cooperative coevolu-
tion, intra-module search occurs via genetic operators and
extra-module search occurs via the collaboration mechanism
[13]. With crossover, intra-module search employs mutation
and extra-module search is performed via recombination.

In the case of our (1+1) CMS-EA, extra-module search uses
an essentially mutation-based method, while intra-module
search is blind, random search.

Still, the CMS-EA is merely a baseline. Understanding
this aspect of the algorithm helps inform our notion of mod-
ular bias. Conceptually, one can imagine a transition matrix,
for example, where transitioning from one module substring
to another occurs according to some specified probability.
With this notion, an intra-module search that is equivalent
to bit-flip mutation can be produced by simply eliciting the
probabilities from the binomial distribution, while one that
is identical to our CMS-EA would be based on a uniform dis-
tribution. Now, though, we can imagine other distributions,
and doing so offers an opportunity to think very generally
about modular bias.

We believe this analysis, though quite coarse, improved
our intuition about CMS-EAs, and we hope there will be in-
creased interest in examining modularization from this per-
spective. Further runtime analysis of modular representa-
tion is certainly needed. In the future, we would like to con-
sider population-based algorithms, as well as those that use
more sophisticated operators. More important is the consid-
eration of increasingly complex modular encodings, biased
encodings in particular.

6. REFERENCES
[1] L. Altenberg. Fitness distance correlation analysis: An

instructive counterexample. In In Proceedings of the
Seventh International Conference on Genetic
Algorithms, pages 57–64. Morgan Kaufmann, 1997.

[2] P. Angeline and J. Pollack. Evolutionary induction of
subroutines. In Proceedings for the 14th Annual
Cognitive Science Conference, pages 236–241, 1992.

[3] D. D’Abrisio and K. Stanley. Generative encoding for
multiagent learning. In Proceedings of the 2008
Genetic and Evolutionary Computation Conference.
ACM Press, 2008.

[4] E. De Jong, D. Thierens, and R. Watson. Defining
modularity, hierarchy, and repetition. In Proceedings
for the 2004 GECCO Workshop on Modularity,
regularity and hierarchy in open-ended evolutionary
computation, pages 2–6. Springer, 2004.

[5] S. Droste, T. Jansen, and I. Wegener. On the analysis
of the (1+1) evolutionary algorithm. Theoretical
Computer Science, 276:51–81, 2002.

[6] I. Garibay, O. Garibay, and A. Wu. Effects of module
encapsulation in repetitively modular genotypes on
the search space. In Proceedings for the 2004 Genetic
and Evolutionary Computation Conference, pages
1125–1137. Springer, 2004.

[7] O. Garibay. Analyzing the Effects of Modularity on
Search Spaces. PhD thesis, University of Central
Florida, Orlando, FL USA, 2009.

[8] O. Garibay, I. Garibay, and A. Wu. The modular
genetic algorithm: exploiting regularities in the
problem space. In Proceedings for the 2003
International Symposium on Computer and
Information Systems, pages 584–591. Springer, 2003.

[9] O. Garibay and A. Wu. Analyzing the effects of
module encapsulation on search spaces. In Proceedings
of the 2007 Genetic and Evolutionary Computation
Conference, pages 1234–1241. ACM Press, 2007.

[10] G. Hornby. Measuring, enabling and comparing
modularity, regularity and hierarchy in evolutionary
design. In Proceedings for the 2005 Genetic and
Evolutionary Computation Conference, pages
1729–1736. Springer, 2005.

[11] T. Jansen and R. Watson. A building-block royal road
where crossover is provably essential. In Proceedings
from the 2007 Genetic and Evolutionary Computation
Conference, pages 1452–1459. ACM Press, 2007.

[12] T. Jansen and R. Wiegand. Bridging the gap between
theory and practice. In Proceedings from the 8th
Parallel and Problem Solving from Nature, pages
61–71. Springer, 2004.

[13] T. Jansen and R. Wiegand. The cooperative
coevolutionary (1+1) EA. Evolutionary Computation,
12(4):405–434, 2004.

[14] T. Jones. Evolutionary Algorithms, Fitness Landscapes
and Search. PhD thesis, University of New Mexico,
Albuquergue, NM USA, 1995.

[15] H. Lipson. Principles of modularity, regularity, and
hierarchy for scalable systems. In Proceedings for the
2004 GECCO Workshop on Modularity, regularity and
hierarchy in open-ended evolutionary computation.
Springer, 2004.

[16] P. Oliveto, J. He, and X. Yao. Time complexity of
evolutionary algorithms for combinatorial
optimization: A decade of results. International
Journal of Automation and Computing, 4(3):281–293,
2007.

[17] K. Stanley, D. D’Abrosio, and J. Gauci. A
hypercube-based indirect encoding for evolving
large-scale neural networks. Artificial Life Journal, (to
appear), 2009.

[18] M. Toussaint. The evolution of genetic representations
and modular adaptation. PhD thesis, Institut für
Neuroinformatik, Ruhr-Universiät Bochum, Germany,
2003.

[19] M. Toussaint. Compact genetic codes as a search
strategy of evolutionary processes. In Foundations of
Genetic Algorithms VIII, pages 75–94. Springer, 2005.

[20] I. Wegener. Theoretical aspects of evolutionary
algorithms. In 28th International Colloquium of
Automata, Languages and Programming (ICALP
2001), pages 64–78. Springer, 2001.

