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Abstract- Seeding the population of an evolutionary al-
gorithm with solutions from previous runs has proved
to be useful when learning control strategies for agents
operating in a complex, changing environment. It has
generally been assumed that initializing a learning algo-
rithm with previoudy learned solutions will be helpful
if the new problem is similar to the old. We will show
that this assumption sometimes does not hold for many
reasonable similarity metrics. Using a more traditional
machine learning per spective, we explain why seeding
is sometimes not helpful by looking at the learning-
experience bias produced by the previously evolved so-
lutions.

1 Introduction

are sufficiently different, it can easily be the case thats bi
toward prior behaviors will trap algorithms in hew subop-
tima (Louis and Johnson 1997). Unfortunately, it is unclear
what “sufficiently different” means for a given task; yet for
those who employ methods like CEL and shaping, it is nev-
ertheless important to understand when seeding is helpful,
and when it can be harmful.

One way to answer such a question is to define a va-
riety of useful distance metrics and study how such mea-
sures affect the performance of seeding methods. Rather
than having to rely on arbitrary notions of distance, thqugh
we focus on multiagent learning from a more traditional
machine learning perspective. As such, we concentrate on
how experiences in the environment can help or hinder the
establishment of an appropriate learning gradient. Com-
plex behavioral tasks often require different sets of behav

Learning tasks for agents in complex, changing enviroriers (skills) for different sets of experiences resultingen
ments can be quite challenging. Indeed, the real-time adaproblem characteristics differ, what one might call differ
tive requirements of agents such as autonomous robots @t aspects of the problem. In some sense, these aspects
erating in the physical world often make learning extremelgorrespond to different objectives; however, the degree to
difficult. To deal with this, several contemporary learningvhich they are relevant changes depending on the circum-
systems employ methods that use prior knowledge whestances of the problem itself. The ability to learn skillatth
learning behaviors in new, but similar tasks. This is ofte@ddress these aspects, and the ability to balance them ap-
done byseeding the learning algorithm with prior knowl- propriately in a given setting, relies on the capabilitylué t
edge. For evolutionary algorithms, previously evolved sdearning algorithm to gain sufficierkperience with them.
lutions are injected into initial populations, competimg t Our view is that exposure to proper experiences, appropri-

survive in the changed world.

ately weighted, is important to establish a learning gnaidie

One proposed framework for dealing with situationdor the larger problem.

requiring adaptive learning methods is anytime learning In this paper, we examine the utility of seeding a learning
(Grefenstette and Ramsey 1992), more recently referred atgorithm using prior knowledge in terms of the algorithm’s
as continuous and embedded learning (CEL) (Schultz amdbility to collect sufficient experiences. We show that seed
Grefenstette 2000). CEL involves monitoring the environing is helpful when it maximizes experiences of important
ment for changes, updating a simulated world with the deelements of the new problem; however, when prior learn-
tected changes, then learning new behaviors in simulationing runs generate behaviors that prevent the algorithm from
cope with the new circumstances before posting the adapteallecting appropriate experiences in the new environment
behaviors to the physical robot. CEL relies on the ability oeeding with those behaviors may not help improve learning
the underlying learning algorithm to use prior knowledggerformance on the new problem. In fact, seeding may be
to assist in learning new situations. One hopes similar siconsidered harmful in the latter case because it impedes the
uations will require similar solutions, and that biasine th algorithm from learning new behaviors that are potentially

algorithm in this way will improve the learning time.

more appropriate for the new environment. The result of

This seeding technique is not unique to CEL. It is alsdhis work is a pragmatic, more traditional machine learning
used when employing methods like shaping—where gragdiew of seeding, in that seeding is a producer of a bias that
ually more challenging problems are presented to a learmay or may not be helpful.

ing algorithm so that an explicit gradient is established an

The next section describes some of the related work with

complex tasks can be learned in stages (Dorigo and Colontechniques involving the incorporation of prior knowledge
betti 1998). Again, here seeding carries with it the hopto bias current learning. Section 3 describes a coverttrack
that a similarity bias will improve learning performance oning task, the various objectives and behaviors required to

complex tasks.

accomplish the task, and how they can be objectively mea-

Despite the many uses of seeding, it should be clear thatred. Section 4 includes details regarding our robot con-
such methods will not always be helpful. When situationgrol architecture, our evolutionary algorithm, and ourcsee



ing mechanism. Section 5 includes experimental results tha high-fidelity simulation. A possible solution is to bias a
illustrate the effect seeding with prior solutions has om thsearch by including domain knowledge previously learned
tracker’s exposure to relevant experiences, which in térn afrom similar problems. Some consider case-based reason-
fects the ability of the algorithm to learn certain behasior ing to be the first application of this principle (Riesbeckian
We conclude in section 6 with a discussion about how thesgchank 1989).

findings relate to our work, and what future steps will be An early evolutionary computation system for learn-

taken. ing rule-based robot controllers in a dynamic environment
is continuous and embedded learning (CEL)—originally
2 Related Work called anytime learning (Grefenstette and Ramsey 1992).

The CEL architecture includes an execution system that
In the discipline of machine learning, researchers stive tmaintains an active controller for a robot operating in d-rea
find a solution that is both accurate and computationally invorld environment, a learning system that includes a simu-
expensive; however, there is often a tradeoff between thelsgion model of the environment and is capable of producing
two characteristics. One way to reduce training time isew controllers, and a monitor that detects when significant
to incorporate domain specific knowledge into the searclehanges in the real-world environment occur. When such a
though frequently little or n@ priori knowledge is avail- change occurs, it triggers an update to the simulation model
able. In the absence of domain specific knowledge, a corte make it more closely match the real world, and the learn-
mon approach is to randomly choose starting points in thiag system initiates a restart and performs a round of evo-
search space. In a standard evolutionary algorithm (E#&), thutionary adaptation to this new environment. The learning
population of candidate solutions are randomly initiadize system seeds a predefined percentage of its population with

Using a random initialization strategy suffers from thethe best previously-learned controllers, while the remain
risk of inadequately covering the search space and biasiitqg members of the population are initialized randomly.
the search toward locally optimal solutions. In order te cirLater versions of CEL included a case-base of previously-
cumvent this risk, there have been a number of proposedolved controllers for this purpose (Ramsey and Grefen-
methods that select a set of points in the search spacesastte 1993). As better control systems are evolved, they ar
evenly distributed as possible. Morrison (2003) proposedteansferred to the execution system for use by the robot in
solution to this common problem in evolutionary algorithmghe real-world environment.
named the heuristic sentinel placement algorithm. Morri- Louis and Johnson (1997) developed a system quite sim-
son'’s initialization uses heuristics, guided by a discrepa ilar to continuous and embedded learning called Case In-
measure, to generate a sequence of well distributed paintgécted Genetic Algorithms (CIGAR), which employs case-
the search space. Of course, techniques for evenly coveribgsed memory and genetic algorithms to reuse previously
the search space tend to be representation dependent. éhgcovered information from a similar problem to bias the
example, a common initialization algorithm for a two layersearch of an unseen space. When CIGAR is faced with a
neural network is the Nguyen-Widrow algorithm (Nguyemew problem it searches the case-base containing solutions
and Widrow 1990). This approach generates random valugs previous problems to find whole or partial solutions to
for weights and biases for all layers of a neural network and similar problem that can be used to seed a genetic algo-
then adjusts these values such that the input space is parséin. In these experiments, it was shown that this method
into different sections covered by a particular node. decreases the learning time to solve the problems.

When knowledge of the problem domain is available, it Floreano and Mondada (1996) seeded an EA to adapt a
can be used to bias the search strategy and reduce the coradral network based robot controller to changes in the en-
putation time required to find a quality solution. An earlyvironment. Neural networks provide a compact, efficient,
example of a mechanism that seeds an EA is Eschelmamiad highly flexible representation for robotic controllers
CHC partial restart (Eshelman 1991). A restart occurs wheFhe neural network receives sensory input from the robot’s
the algorithm determines that a population has stagnateds#nsors (as well as possible state information), and pesduc
converged. Eschelman’s system preserves an identical capy appropriate control commands as its outputs. Floreano
of the best individual and reinitializes the rest of the popuand Mondada used a small Khepera robot whose task was
lation with individuals that are highly mutated copies d th to navigate a square area for as long as its battery life would
best. While restarting due to stagnation or convergence hasstain. The robot was equipped with a battery sensor, and a
proved to be useful, our focus here is on a quite differefgattery recharge corner of the square was painted black and
situation in which the algorithm is restarted specificatly t illuminated by lights. Once the Khepera could successfully
deal with a change in the environment. navigate the area and recharge its battery, the lights were

Of particular interest is learning robot controllers.moved to the opposite corner of the square area from the
Robots typically operate in unstructured, uncertain, anblack painted recharging station. After this environménta
changing environments where it is critical to find qualitychange, Floreano and Mondada did not restart the learning
solutions quickly. In particular, if a robot is slow to adaptprocess, they simply continued the genetic algorithm with
to changes in its environment, it may suffer any numbethe final population. This strategy yielded a highly fit solu-
of unfortunate consequences, including physical harm. Yé&bn in fewer evaluations than reinitializing the genetic a
evaluating candidate solutions can be extremely time cogerithm randomly.
suming when learning is done directly on the robot or in



Dorigo and Colombetti (1998) address a related probleto adapt to changed target capabilities.
in getting a robotic system to learn to perform a complex
task based upon interaction with an external trainer (a.g., LTt
human operator or reinforcement program). This approach et
focuses heavily upon the use of reinforcementlearningtech N
nigues, and relies upon the trainer to provide appropriate fi
ness functions in order to shape the behaviors of the robotic
system. The ternshaping is borrowed from experimental
psychology (Skinner 1938) and is based upon the notion
that complex behaviors can be decomposed into simpler
parts. The parts are learned separately and then integrated
together. One of the arguments implicit to this approach is
that complex behavior is learned more easily through de-
composition and learning of simpler behaviors. Figure 1: The task is to learn to track the target as closely

Other researchers have adapted the robot shapifg Possible while not being seen.
paradigm to use other forms of machine learning. A spe-
cific type of shaping dubbeiicremental evolution is used Though the basic task appears straightforward, a closer
to shape behaviors by manipulating the complexity of thispection will reveal that it may require a variety of skill
task and the fitness function. An interesting application o?n the part of the tracker, depending on the vision capabili-
this method at the University of Sussex involved a robdies of the target. We have identified at least three differen
with a camera that is taught incrementally to distinguish beSkills observed to be helpful in high performance tracker
tween a rectangle and a triangle (Harvey et al. 1997). Learfolutions, depending upon the target's capabilities:
ing _beglns with the robot given the S|mple_ task of forwarqollowing: The tracker attempts to get as close as possible
motion, then moving toward targets both big and small, and to the target.
finally learning to approach a triangle instead of a square.

There exists a common underlying assumption in all thavoiding: The tracker attempts to remain outside the tar-
previous work described here oninitializing a learningalg get's range of vision.
rithm with previously learned solutions. The assumptionis . _ ,
that seeding the learning algorithm with prior results williding: The tracker attempts to remain outside the target's
be helpful if the new problem is similar to the old. We angle of view.
will show that this assumption sometimes does not hold for These three skills reflect different means of addressing
many reasonable similarity metrics, and explain this s&di the two competing objectives of tracking and not being seen.
failure by looking at the learning-experience bias producerhefollow behavior concentrates exclusively on the first ob-
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field of view

by the prior results. jective, while theavoid andhide behaviors concentrate on
) different means of achieving the second objective.
3 Covert Tracking Obviously these skills are interrelated, but reflect very

_ ) ) _ different priorities of the overall, compound behavior.
Many seemingly simple multiagent problem domains conyoreover, they vary in importance in different contextsr Fo

tain surprising complexity, often requiring agents to @dagyyample, if the angle of view of the targetig0° then there

behaviors to suit even modest changes in the problem chy need for théiding skill, while theavoid skill is of par-

acteristics. Consider, for example, a covert tracking proljcyar importance. When the target's angle of viewss®,

lem. Here there are two agents, a target and a tracker. Moiding is less important, antiiding becomes a valuable

our case, the behavior of the target is fixed, while we arg for good performance.

attempting to learn behaviors for the tracker; however, the |1 s important to understand that, while it may be rea-

target's vision capabilities may vary. sonable to expect these skills to be important parts of the be
The target moves around the environment, perhaps P¢faviors of the final solutions, they are observed phenomena.

formmg various task_s, but will react to any unknown agengince we do not wish tengineer particular solutions, they

it sees. Such a reaction may be to attack the tracker in SOMA| ot be used directly during learning. Instead, leagnin

way, or perhaps to run away from the tracker, etc. In teSkerformance will concentrate on the larger task objectives

ing and training runs of our system, we assume that if therack the target as closely as possible without being seen.

target sees the tracker it will inflict some form of damagernese two objectives are captured by the simple minimiza-
that does not necessarily impair the tracker physically, byion function:

nonetheless is undesirable.

The tracker’s task is to track the target as closely as pos- F(tracker) = zs: { 3v if tracker seen
sible while staying out of the target’s field of view, as shown - r;  otherwise,
in Figure 1. The tracker will be rewarded the closer it is to
the target; however, if seen it will be penalized. Moreovervheres represents the number of steps in a simulation,
since the field of view of the target may be different at difis the vision range of the target, andis the range of the
ferent times, the tracker may need to alter its basic behavitarget from the tracker at step We developed separate,

1)
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external measures for the three skills described above, kskills. Once quantified, we can then use these measures to

these measures will not be used by the EA. examine how different environmental parameters affect the
different kinds of tracking behaviors learned by the system
3.1 Experiencesand Skills To compute these measures for a particular solution, we

run it in simulation many times. In the case of thoH ow-

; : . o ) ing behavior, we compute a simple linear distance from the
ferent kinds (.Jf experiences QUrlng training. These d'fﬁeret acker to the target, averaged across all time steps. The
sets of experiences help define different aspects of the Pr9Bwer the number, the more the trackefdtowi ng the tar-

lem that relate in various ways to the two underlying Ob]ei%iet. Keep in mind that orientation to the target is irrelévan

Learning the three covert tracking skills clearly requitds

tives of the_ compound problem: Different problem aspec taying two meters in front of the target is just as good (or
will determine the degree to which the tracker is capable

I . Kkills add ing th I 7= Pad) as staying two meters behind it. For #weid behav-
earning skills addressing those aspects. In some Smﬁi.t'olor, we simply compute a ratio of the number of time steps
certain experiences will be rare, and the learning algarith

. likel h Hici di I Kill dthe tracker is within the vision range of the target out of all
Ids uniikely to ?Vel asu blrlem gradient to learn skills ady;nq steps, regardless of the target’s angle of view. Thé fina
ressing a particular problem aspect. ehaviorhiding, is slightly more complicated. For this we

h Fégf?re 2 hke.I%S mfake It qlear wr}at cwcumsta;u;]es prot:/ll mpute the absolute value of the relative angle of orien-
the difierent kinds of experiences for aspects of the proble i,y petween the tracker and the target in each step, cen-

relating the three aforementioned skills. The top segmient tered directly behind the target. In other words, a tracker

the figure shows that tracker positions closer to the targglst is exactly behind the target receives a hiding score for

receive higher qualitfollowing experienceg_ th.e.|8ﬂ S€9- that step of0, but one that is directly in front receives a
ment shows how the tracker receives posiaveiding ex-  geqre ofr The final measure is the average of such angles

periences by staying outside the target's vision range; aAGer all the steps in a simulation. So, again, lower is better

the ?ghtjggrﬂent |Ilust,ra§s(tjhat p03|tlvd|(rj1? exp?rcljgnces We should again emphasize that these measure are used for
are found in the target's blind-spot, regardless of distanc post-analysis only. The learning process is driven only by

the objective function in equation 1

4 Learning Methodology

following

©

4.1 Control Architecture

The tracker is controlled by a combination of motor schema
(Arkin 1989) and a two-layer feed-forward neural network.
The neural network takes the range, bearing, and heading of
the target as inputs and produces the range and bearing of a
goal point at the rate of 10 Hz. A linear attraction vector is
computed from the goal point, and summed with repulsive
y . vectors for any sensed obstacles and a small amount of ran-
R dom noise to produce a control vector that sets the forward
speed and turning rate of the tracker. The neural network
is the learnable component of the tracker’s control system.
Figure 2: The tracking agent receives different types of exyetworks with different connections weights will produce
periences for different skills, based on its position &t trackers with different high-level behaviors. In contraise
to the target. target is controlled only by motor schema that are hand-
coded to produced a smooth random walk. These actions
As we will see, when circumstances prevent the age@fe performed in simulation using TeamBots (Balch 1998).
from obtaining different kinds of experiences, learning The architecture of the tracker’s neural network is shown
skills that distinguish such experiences becomes difficulf Figure 3. Five hidden and two output nodes are imple-
or impossible. In some sense, this is a traditional machiniented using a sigmoid activation function that produces
learning perspective: In order to learn a concept, the teargn output in the rangé—0.5,0.5). Three real-valued in-
ing algorithm must have appropriate examples necessarygQts have weighted connections to all the hidden nodes, and

avoiding
hiding

establish a gradient. each hidden node has a weighted connection to both of the
_ _ output nodes. In addition, in order to provide a learnable
3.2 Measuring Agent Skills bias, the hidden and output nodes have a weighted connec-

We could visually examine behaviors learned in diI"ferentf.On from an input clamped to the vaIue_l.O. This topol_ogy
pﬁoduces a network with a total of 32 weighted connections.

circumstances to see how well the tracker was able to lea \ K . h fih | Do
to solve different aspects of the task. But to get a mor; € network output representing the range of the goal point

objective picture of what aspects of the task are address@oconverted to a value between 0.0 and 20.0 meters, and the

by various solutions, it is necessary to quantify the perfoPUtpUt representing the goal bearing is converted to a value

mance of the tracker for each of the three covert trackin'ﬁI the range(—, 7).



goalrange  goal bearing By resetting the standard deviation values of the seed in-
dividual, we encourage the mutation operator to explore a
larger region of the space around the previous best solution
However, given that our EA is an ES+ )), the original
unmodified seed individual will continue to be copied into
future generations for as long as it is not superseded by a
better solution. Therefore, the algorithm may continue to
exploit this prior knowledge for many generations.

5 Experimental Results

Y At the most basic level, the question of whether or not it
target bearing is advisable to seed a current learning situation with prior
knowledge seems straightforward: If the older situation is
Figure 3: Neural network with learnable connection weightfke the current one then presumably a learning algorithm
for producing high-level tracker behaviors should be able to leverage useful elements of the behavior
in order to assist in learning the new situation. Unfortu-
nately, finding ameasure for similarity that is commensu-
rate with such learning properties is difficult in generakla
Although the tracker’s neural network topology is fixed, weoften the most obvious similarity metrics, such as some kind
learn each of the 32 real-valued connection weights with @f parameter-space distance, do not provide this facliity.
(1 + X) evolution strategy (ES) as described by Back anthe case of the covert tracking problem, for example, at-
Schwefel (1993). Specifically, we use an(ES+ 70). That tempting to learn behaviors when the angle of vie@78°
is, we begin with 10 parents, create 70 children by selectirigrns out to be easy when th&0° case is used as a seed, but
parents uniformly and mutating them, evaluate each of theery difficult when the360° case is used, as we will show
individuals in the combined population of 80 parents anéh the next section.
children, and apply truncation selection to choose the best To try to understand why this is the case, it is neces-
10 individuals for the next generation. sary to better understand the relationship between problem
In addition to a real-valued vector of connection weightsgharacteristics and learning experiences. In order toidp th
each individual consists of a companion vector of standamle examine the skills learned in five separate experimen-
deviations used by a Gaussian mutation operator that is dp groups, each corresponding to a covert tracking learn-
plied to each connection weight. The weights are initializeing problem with the target having a different angle of view
randomly in the rangé-5.0, 5.0) unless they are initialized (0°, 90°, 180°, 270°, and360°). Each group was evolved
using prior results as described in the next section. Regaridr 100 generations in 50 independent trials, then the best
less, they are constrained to the rarigd 0.0,10.0). The control system from each group was considered for exter-
standard deviations are initialized to 1.0, and are therasel nal measurement. Figure 4 below shows the relative perfor-
adapted within the rang@.01,1.0). Mutation is the only mance for each group and measure. The points are mean
operator used by our EA. values of 100 sample test runs, the wings represent the 95%
To evaluate an individual, we construct a neural neteonfidence intervals for each group. Recall that lower val-
work from its connection-weight vector and run 25 four-ues are better.
minute TeamBots simulations of the network-controlled Pair-wiset-tests with Bonferoni adjustment shows that,
agent tracking the target. In each of the 25 runs, the trackirthe case of théollowing measure, statistically significant
will be given a different random starting position 10 meterglifferences are maintained between all groups excegtthe
from the target. Given a simulation resolution of 10 Hzand90° cases. In the case afoiding, the0° and90° cases
the minimization function described in equation 1 will beare not statistically different, nor af®° and180°, but all
summed over 2400 steps, and will be averaged over the ther groups are different from one another. Whthing,
runs to produce the final evaluation value used by the EA.only the180° and270° cannot be statistically distinguished
from each other; the others are different.
4.3 Seeding the EA These results show the effects that problem characteris-
i ) ) _ _ . tics have on the ability of an agent to learn to address cer-
In the next section we will describe experiments in whichg;, problem aspects. Situations in which the target'sang|

the population qf neura_l networks are initialized randamlyys iew is very limited present no (or few) experiences for
and other experiments in which the networks are initializegeaming toavoid the target—as a result, the tracldoes

from previously evolved solutions. When initializing @ pOp nt |earn that behavior. By the same token, when there is no

ulation from a prior run of the EA, we take the best indiyirectional bias in the target's vision system, as is thecas
vidual from its final generation and reset its standard devj;, the 0° and360° groups, the tracker cannot learnttile

ation values to 1.0. A single copy of this individual is then, 5 iy jarly well. Moreover, this graph helps illustratet
inserted into the new population, while the remaining indij 5o rtant point that parameters of the system form tradeoff
viduals are initialized randomly. in experience sets available to the agent during learnirdy, a

4.2 Evolving Behavior s



portant in that circumstance. The trouble comes when we
introduce ara priori behavior into the learning process, a
behavior that will influence how the agent gathers new in-
== formation.
Consider the case in which we attempt to improve the
learning performance on th&70° angle of view problem
0 - by seeding with similaa priori cases. Here, the80° case
makes an appealing seed for a variety of reasons. First, from
< a parameter-space point of view, it is no more distant from
o the new problem than is th&0° case. Additionally, in
our previous measures, our learning algorithm was able to
: : . . . evolve very goodiding behaviors for thd 80° case. Still,
given only distance as arule of thumb, it is reasonable to as-
. sume that both80° and360° will make good seeds for the
270° problem. As it turns out, and has already been men-
tioned, using th&60° case as a seed does not help. More-
| over, even though it is at the opposite end of the parameter
space, seeding with th& case is of more value for learning
- the270° context than th&60° seed.
—— Figure 5 illustrates these situations. The left-hand panel
i of the plot shows the randomly initialized evolution of the
i best behavior for each of the?, 180°, and 360° covert
I tracking problems, while the right shows the average best-
7 I of-generation learning performance on #7@° problem af-
. ter seeding with the afore mentioned case. For comparison
purposes, the average learning curve for the group evolv-
ing 270° from random initialization is also shown on the
] - = right-hand side. Statistically, the final results of theiugro
7 e where270° is learned from random initialization is indistin-
. guishable from that of th860° seeded case; all other final
(') 9'0 1;30 2;0 3(;0 performances differ significantly.
Angle Of View The skill sets learned in the priori tracking behaviors
alter the tracker's exposure to potentially necessary -expe

riences. Thel80° case, for example, provides a skill set

Figure 4: External measures of final learned behaviors u- .
. ; ; at allows for most of the necessary experiences for learn-
der different angles of view. The measures illustrate thre pe

1 1 1 [e] .
formance of the tracker as fibllows the targetavoids the Ing high performance behaviors in the neé0® context;

. . the tracker has access to positive and negdiitieng expe-
target, anchides from the target on average per time step,. s 2 =
fiences, for example. In the reverse situation, this is het t
Lower values are better.

case. Th&60° behaviorsavoid the target entirely, and there
are few experiences to learnhile; the algorithm will have

thus there are natural tradeoffs in skill sets that occur astarely on mutation to produce tracking behaviors that allow
result of such changes; in one situation it is better to learthe agent to be exposed to the required experiences, while
skills A and B, while in another it is better to leaid. still performing sufficiently to survive selection. Sinagch

Just as the problem characteristics can prevent the agerntnutation is unlikely at this point, tH#60° seed stalls out
from learning skills because they preclude certain expenwith very little improvement on th&70° problem, while the
ences, the skills themselves (once learned) restrict expE80° makes steady improvement. In fact, when 868°
riences. Behaviors that have learnedatmid the vision group was used to seed the learning algorithm to solve the
range of the target, for example, will incur few (or no) high-270° problem, only four of the 50 trials resulted in behav-
performancédollowing-while-hiding experiences in the fu- iors that show any significant degree of hiding.
ture. This being the case, it seems clear that a simple The 0° seed is also a very interesting case. As men-
distance measure between parameter values makes antionred above, because there is no directional information i
sufficient similarity metric for the purposes of determigin the covert tracking problem when the angle of view of the
whether or not a prior behavior makes a useful seed. target is0° (like the 360° case), that case does not learn

The fact that the tracker learns these skills better in some hide. As such, the performance of the case on the new
circumstances than others is no cause for alarm. Therepsoblem begins relatively poorly; however, becausethe
nothing inherently wrong with this since any particuladiski seed has access to betbéding andfollowing experiences,
may be unnecessary in the context in which the trackinig quickly overtakes the60° seed, as well as random ini-
behavior was learned—the problem aspect may be unirtialization for the270° problem.
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Figure 5: Using prior results fromr, 180° and360° angle of view environments to seed initial population farkéng in
270° angle of view environment.

A more precise picture for these effects can be seen axperiences are missing, or weighted inappropriately; the
Figure 6, where external measures are shown for the finadlated concepts will not be learned.
resulting behaviors for some of the aforementioned groups. In many multiagent settings the problem domain can
Here we average the measure over the resulting behaviatsange, and in such cases we are tempted to leverage prior
from the 50 independent runs of each experimental groulgarning results to make new problems easier to solve. This
We consider the situation where the and360° cases are paper begins to explore the question of when this so-called
used to seed th270° covert tracking problem. Addition- seedingis advisable by examining a particular class of prob-
ally, we include measures for the randomly initializ&  lems (covert tracking) from a machine learning perspective
270°, and360° cases for comparison purposes. For botlChanges in problem characteristics affect the algorithm’s
follow andavoid, all groups are statistically different. In the exposure to different kinds of experiences, which in turn af
case of théhide measure, the two right-most grou$(° fects the potential success of seeding. Our conclusiomis th
seedin@270°, and360° randomly initialized) do not differ, when prior learning creates behaviors that reduce or elimi-
nor do the cases wheté seed270°, and270° itself. Oth- nate necessary experience in the new context, seeding will
erwise, all the groups are different. not help. While we concentrated on a particular learning al-

There are several items of note in this graph. Firsgorithm, seeding mechanism, and problem class, we believe
though Figure 5 suggests that tBé0° seed performs as that this conclusion is fairly general.
well as the randomly initialized case, here we see that no Our examination was promulgated by our needs: Our lab
new skills are learned. This bolsters our observation tleat weonducts research in evolutionary robotics, and contisuou
can expect very little from this seed. The case, in addi- and embedded learning is one of the tools we use. However,
tion to performing statistically better than the randonnliy i it is clear to us that the results are helpful in many contexts
tialized groupdoes learn something new; it learns lide.  such as shaping. Indeed, another study currently underway
The reason for this is quite clear: Thé behavior allows relates to the order in which learning cases should predente
the agent to gather relevant experiences iRt context, to an algorithm employing shaping. Using the same ma-

while the360° does not. chine learning perspective we've shown here, we hypothe-
size that one should first learn sub-problems that constitut
6 Conclusions rare but vital experiences in the global problem. In a track-

ing and docking task, for example, one should learn docking
While multiagent learning problems differ from more tra-first, then the complete problem.
ditional machine learning tasks, there are still many impor Next we turn our attention to the use of CEL as a means
tant similarities. In both cases, learning algorithms typiof co-adaptively learning behaviors for cooperative multi
cally need to be exposed to appropriate experiences in ordggent teams. To do this, it will be important to understand
to learn to distinguish different concepts. When relevarwhat types of prior-learned behaviors will be useful for dif
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