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Abstract— Layered learning is a machine learning paradigm 

used in conjunction with direct-policy search reinforcement 
learning methods to find high performance agent behaviors for 
complex tasks. At its core, layered learning is a decomposition-
based paradigm that shares many characteristics with robot 
shaping, transfer learning, hierarchical decomposition, and 
incremental learning. Previous studies have provided evidence 
that layered learning has the ability to outperform standard 
monolithic methods of learning in many cases. 

The dilemma of balancing stability and plasticity is a common 
problem in machine learning that causes learning agents to 
compromise between retaining learned information to perform a 
task with new incoming information. Although existing work 
implies that there is a stability-plasticity imbalance that greatly 
limits layered learning agents’ ability to learn optimally, no work 
explicitly verifies the existence of the imbalance or its causes. This 
work investigates the stability-plasticity imbalance and 
demonstrates that indeed, layered learning heavily favors 
plasticity, which can cause learned subtask proficiency to be lost 
when new tasks are learned. We conclude by identifying potential 
causes of the imbalance in layered learning and provide high level 
advice about how to mitigate the imbalance's negative effects. 

Keywords— Stability-Plasticity Dilemma, Layered Learning, 

Decomposition-based Reinforcement Learning 

I. INTRODUCTION 
This work provides a demonstration that layered learning, a 

sequential, decomposition-based learning paradigm, can be 
affected by a stability-plasticity imbalance. The stability-
plasticity dilemma is a common problem in machine learning 
that causes learning agents to struggle with finding the right 
balance of retaining important information used to perform 
previously learned behaviors and tasks while learning to solve 
new problems [1]. On the one hand, imbalances often result in 
the learner quickly losing proficiency in learned, older tasks in 
favor of new, incoming knowledge. While on the other hand, 
the imbalance can cause the system to struggle to adapt and 
perform newer tasks fast enough to thrive in a reinforcement 
environment. This work serves as the first empirical study of the 
imbalance in the abstract paradigm of layered learning. 
Furthermore, we investigate the causes and effects for the 
imbalance in layered learning. 

The demonstration is needed because the paradigm is being 
successfully used by a subset of the machine learning and 

robotics community to develop the behavioral policies of 
autonomous agents that solve complex tasks without regard to 
such potential issues [2]. Additionally, layered learning shares 
many similarities with other established decomposition-based 
reinforcement learning (RL) techniques; these similarities 
further motivate this work to gain an understanding of the 
stability-plasticity dilemma in an abstract paradigm to uncover 
potential imbalance issues with other, more commonly used and 
domain-specific, algorithms that share core decomposition-
based fundamentals with layered learning. Also, because other 
stability-plasticity studies examine very specific and specialized 
decomposition-based learning algorithms (typically including 
artificial neural networks), this work’s main contribution is its 
investigation of the dilemma in a broader scope of 
reinforcement learning.  

By analyzing the dilemma with a paradigm that can employ 
a diverse range of machine learning algorithms, the results of 
this work can be of value to similar learning methods. At the 
very least, this demonstration provides evidence that an 
imbalance can drastically affect learning efficiencies and 
encourage investigations in similar learning approach, an area 
that is lacking in attention in the decomposition-based 
reinforcement learning community. 

In the presented work, we construct a direct-policy search 
multi-agent problem with general properties common to many 
RL problems. We use task and subtask performance to clearly 
demonstrate that layered learning can be seriously impacted by 
a stability-plasticity imbalance. We conclude by identifying 
causes of the imbalance and outline future work that aims to 
mitigate the negative effects of the imbalance phenomenon. 

II. BACKGROUND 
Stone and Veloso [2] introduced layered learning as a ma-

chine learning paradigm that relies on task decomposition to 
simplify a complex task into manageable components 
(subtasks). This paradigm should not be confused with other 
learning techniques, such as multi-layered neural networks, 
that rely on layers in their own processes.  

At a high level, layered learning is given a decomposition 
of one complex task from an external source, the developer. 
The process then takes the decomposition’s series of simpler 
subtasks and modifies a decision-making policy to perform 
each subtask sequentially. In machine learning, a policy is a 
mapping of states to actions that determines how an agent be-
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haves. A policy ultimately determines an agent’s effectiveness 
at performing desired tasks and is the target of learning.  

A single layered learning instance, where an agent is 
responsible for learning a single complex task, is comprised of 
a collection of layers, the set L. The agent learns to perform the 
complex task by sequentially iterating through each layer in L. 
Defined in (1), each subtask learning phase is a layer (Li), 
where the agent is given a training environment, performance 
evaluation function, and set of training examples designed for 
learning the subtask (Ti). The layer also accepts as input the set 
of all state variables for the learner to analyze its environment 
(Fi), a set of all possible actions the learning agent can make 
(Oi), and a machine learning technique to learn the subtask 
(Mi). The final input hi-1 is the initial policy that will be 
optimized to perform subtask Ti. Once the layer is complete, 
the outputted policy (hi) is used as the initial policy for the 
subsequent layer (Li+1), creating a dependency of learning 
among the layers. Finally, in each layer, the agent optimizes its 
policy to perform subtask Ti until a halting condition is 
satisfied. The halting condition determines when the agent 
transitions to the next layer to learn a new subtask. 

  Li = (Fi, Oi, Ti, Mi, hi-1)                              (1) 

Two configurations in which manner a policy can be 
developed in layered learning are layer isolation and layer 
overlapping. In layer isolation, independent sub-policies are 
adapted to learn subtasks, and the learning in one layer does not 
alter the sub-policy used in another. In layer overlapping, two 
or more layers can modify shared policy information. 
Intuitively, layer overlapping mechanisms run the highest risk 
of being impacted by a stability-plasticity imbalance, so we 
focus our attention on such cases. Still, there are advantages to 
using overlapping, including the removal of isolation’s need for 
sub-policies, less design time dedicated to guaranteeing layers 
are truly isolated, reduction in redundant learning because 
subtasks can share basic, common information that does not 
have to be relearned, and increased freedom in how the policy 
transfers learned knowledge from one layer to the next.  

Layered learning was introduced by Stone and Veloso [3] 
and extended in [2] to train simulated, autonomous agents to 
play the complex game of soccer. Since then, the learning 
paradigm has been used to develop the decision-making 
policies for a range of diverse problems.  

Early layered learning works examine the feasibility of the 
paradigm and focus mostly on comparing the paradigm’s 
ability to develop policies against standard, monolithic 
learning. Monolithic learning is a fair comparison control 
because in a learning scheme that employs it, there is no 
decomposition and the agent must learn the complex task in 
one learning phase, contradicting the core principles of layered 
learning. These works include those of Hsu and Gustafson’s [4, 
5] and Gustafson and Hsu’s [6] layered learning development 
of Keep-away (a soccer variant) playing agents and Jackson 
and Gibbons’ [7] study of layered learning’s ability to solve 
Boolean-logic problems and the impact of using 
decompositions based on lower-ordered sub-problems. These 
studies demonstrate that layered learning can often rival 

monolithic learning in producing better performing policies 
that solve complex tasks. 

Other works examine layered learning in other problem 
areas: Whiteson and Stone [8] introduced concurrent layered 
learning, a coevolutionary adaptation to layered learning, and 
Cherubini, Giannone, and Iocchi [9] and Fidelman and Stone 
[10] study the feasibility of using layered learning on real, 
physical robots. Both studies demonstrate that layered learning 
can be used to teach physical robots how to perform complex 
tasks. 

The majority of layered learning works use layer isolation 
to safeguard layers from modifying state-action pairs of the 
policy relied on by other layers. Two negatives of using layer 
isolation are that 1) it requires developers to dedicate design 
time to plan for independent sub-policies to be developed and 
assigned to each layer and 2) the agent must be able to 
recombine all of the sub-policies into one policy to perform the 
overall task. 

Two works that use the alternative to layer isolation, layer 
overlapping, are the aforementioned Jackson and Gibbons’ [7] 
study of layered learning to solve Boolean-logic problems and 
Mondesire and Wiegand’s [11] work that uses layered learning 
to train predators in a predator-prey scenario. Without 
explicitly studying stability and plasticity, this latter work’s 
findings suggest that layered learning can suffer from a 
stability-plasticity imbalance. The study’s experiment results 
show that as the predator agent learned a new subtask with 
layer overlapping, the performance of a previously learned 
subtask plummets, ultimately negatively affecting overall task 
performance. This loss in the oldest subtask’s proficiency 
showed that layers can be detrimental to each other and the 
time and effort required to regain lost important information is 
wasted opportunity to search for more optimal solutions 
instead of repairing what was lost. 

Unfortunately, there is no study in the literature that clearly 
and explicitly demonstrates that proficiency loss takes place as 
layered learning agents learn to perform new subtasks. 
Moreover, as layered learning grows in use and popularity, its 
true potential is limited by our lack of understanding of such 
performance losses. Because layered learning shares many 
features with other learning methods, there is much to be 
learned about challenges that face layered learning by 
examining the difficulties faced by other methods. 
Alternatively, perhaps deeper understanding can be gained in 
other methods by examining these issues in layered learning. 

III. METHODOLOGY 
The goals of this work are to demonstrate that layered 

learning with layer overlapping is susceptible to a stability-
plasticity imbalance and to identify the causes of the 
imbalance. Through these experiments, this work uncovers that 
layered learning can easily favor plasticity, causing newly 
acquired knowledge to drive out critical information needed to 
perform subtasks of earlier layers. The driven out knowledge is 
negatively forgotten [12], which causes older subtasks’ 
performance to decrease drastically. The loss of older subtask 
proficiency is significant because it negatively affects the 
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performance of the complex task that relies heavily on the lost 
information and the ability to perform its forgotten subtasks. 

At the heart of layered learning are the layer transitions, 
which change the learning focus from one subtask to another. 
Experiment results conclude that these performance evaluation 
changes can negatively affect the learner’s ability to maintain 
proficiency in older subtasks as newer ones are learned in 
decomposition with layer overlapping. 

To demonstrate the susceptibility of a stability-plasticity 
imbalance in layered learning with overlapping, experiments 
applied to a multi-agent problem are conducted. The 
experiments are explicitly design to demonstrate that as the 
performance evaluation functions transitions from one subtask 
to another, the policy experiences drastic changes to its state-
action pairs, subtask and task performance degrades, and 
computational effort is wasted when a policy attempts to regain 
lost proficiency. 

Specifically, in this studied problem, each agent represents 
a quadcopter unmanned aerial vehicle (UAV) that must learn 
when and how to take off and land, move to a coordinate in the 
environment, refuel, and transmit reached coordinates to its 
UAV teammates. Quadcopters are similar to remote controlled 
helicopters with four rotors instead only one. They are known 
for their mobility and ability to change direction and heading 
quickly. The problem is deliberately abstracted to keep the 
focus on the study of plasticity. 

A.  The UAV Surveying Problem 
In this surveying task, four UAVs are initially grounded at 

four different corners of the 50x50 two-dimensional discrete 
grid environment, depicted in Fig. 1. In each run of the 
simulation with this task, performance is evaluated on the 
percentage of unique grid coordinates the UAV team has 
navigated to out of the 2500 total number of cells in 2000 time-
steps. At every time-step, each UAV determines its state, 
selects and performs an action with that corresponding state 
from its policy. UAVs have the movement abilities to take off, 
land, and move towards any coordinate in the environment, one 
cell at a time. 

UAVs remain active in the simulation as long as they have 
fuel. With each time-step a UAV is in flight, its fuel level 
depletes by one unit. If a UAV’s fuel level reaches zero, the 
UAV becomes inactive and can no longer execute actions, such 
as movement to survey the environment or refuel. To replenish 
depleting fuel levels, a UAV must navigate back to a refueling 
depot (located on the ground of each of the four corners of the 
grid), land, and explicitly execute the “refuel” action. Refueling 
replenishes the UAV 10 units per time-step the action is 
executed. Initially, a UAV has 100 units of fuel and refueling 
never exceeds a level of 100 units. Multiple UAVs can refuel 
from the same depot at the same time. 

The surveying problem requires collaboration among the 
UAV teammates to maximize the task’s performance: no single 
UAV can navigate to every cell in the environment in the 
limited amount of time and duplication with UAVs covering 
the same cell wastes time. To facilitate collaboration, each  

 
Figure 1. A screen capture of the UAV simulation (at 10th of the scale) 

UAV maintains a list of coordinates the team has visited and 
may execute the action “transmit coordinates” to broadcast a 
complete history of all of the coordinates that UAV has 
reached during the simulation up until the current time-step. 
This broadcast is instant and is guaranteed to reach each of the 
other UAVs. 

Because each UAV must decide when to transmit and when 
to perform other actions, a UAV also contains a buffer of 
coordinates it has surveyed since its last transmit action was 
executed. Sub-states, such as “is buffer size at least 5”, exist so 
each UAV can determine their own thresholds of when to 
transmit unshared, reached coordinates with their teammates. 

The problem is similar to those studied in other 
reinforcement learning and direct-policy search works, 
including UAV navigation and search-and-rescue problems. 
This UAV exploration problem was selected because of its task 
complexity, straight-forward decomposition into subtasks, 
requirement of UAV collaboration among teammates to solve 
the problem optimally, and direct mapping to problems used in 
the real world. 

B. Learning Configuration 
To learn to solve the problem, a decomposition of the UAV 

surveying problem and a layer configuration, including a 
subtask sequence, training scenarios, and halting conditions are 
used with layered learning to optimize the UAV policies. The 
employed decomposition is as follows: the agent team first 
learns to refuel in layer 1, take off and survey the environment 
in layer 2, and lastly, the overall task of surveying and 
refueling when necessary in the final, aggregate layer of layer 
3. 

The process of layered learning takes one set of policies, 
one policy for each UAV, and passes it into layer 1 for 
optimization on the refueling subtask. In that layer, a learning 
algorithm is used to optimize performance on the subtask by 
repeatedly running the refueling simulation and modifying the 
policies to map states to appropriate actions. This evaluation 
and modification process repeats for a set number of iterations, 
called epochs. We use the term epoch to denote a generation in 
the employed evolutionary algorithm. The refueling optimized 
policy set is then fed into the second layer, which does the 
same process as layer 1 but optimizes the policy set on the take 
off and survey subtask. Finally, the policy set outputted in 
layer 3 is optimized on the overall task. Through this 
decomposition, the aim is to gradually learn each important 
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aspect of the overall task in incremental phases of learning and 
have a policy set that solves the overall task at the end of the 
last epoch of layer 3. 

C. Policy Representation:  
Each UAV can perform exactly one action for each state that 

it is in at any given time-step. A UAV’s state is the collective 
value of the UAV’s internal conditions, called sub-states, 
similar to a Boolean array where each element corresponds to a 
specific sub-state value. A sub-state is a true or false value of a 
condition the UAV has at a time-step. For example, the sub-
state “is grounded” is true if the UAV is on the ground, not in 
flight. At every time-step, each UAV evaluates all of its sub-
states and represents that collection as a single state (similar to 
converting a Boolean array into a decimal value). Table I lists 
all of the UAV sub-states and table II lists all of the actions. 

The policy is a direct state-action mapping that links each 
state to one of seven actions that UAV can perform. In this 
problem, there are 7 unique actions with 8 sub-states. The 
simulation ignores impossible or redundant actions, such as 
landing when already grounded or flying to a new coordinate 
when grounded. The actions are to move to the closes unvisited 
coordinate, take off, land, NOP (remain idle), move towards 
the closest fuel depot, refuel, and to transmit coordinates. For 
the states, each UAV checks its own conditions, which are the 
following: is my fuel level low, am I grounded, am I at a fuel 
depot, and is my fuel level above 90% full. Also, there are four 
states asking if the UAV’s transmission buffer size was at least 
1, 5, 10, or 20 coordinates full. 

D. (1+1) Evolutionary Algorithm 
A (1+1) Evolutionary Algorithm [(1+1) EA] is employed 

with layered learning to facility policy optimization over the 
UAV problem. A (1+1) EA is a simplified type of EA where 
one genetic operator is used to manipulate the only individual 
in the population. Borisovsky and Eremeev [13] and Wegener 
and Witt [14] studied (1+1) EA performance and provide 
additional details on the approach. The algorithm is chosen 
because it is a simple, yet effective, learning technique. 
Although the EA is well-studied, the stability-plasticity 
dilemma's effects and causes in this type of learning lacks 
investigation and understanding. Further, because we wish to 
focus on layered learning in general and not the underlying 
machine learning methods, we chose as simple of an example 
from direct-policy search technique as possible. These 
experiments demonstrate that although the employed learning 
algorithms can introduce their own biases toward stability or 
plasticity, it is layered learning’s layer transitions that cause 
performance to negatively be affected by an imbalance with the 
decomposition-based approach. 

The (1+1) EA uses a single “parent” candidate solution, 
generates a “child” candidate solution via a “mutation” genetic 
operator, and replaces the parent with the child if it performs at 
least as well as the parent. The sole parent is the set of policies 
of the team, where each policy represents the decision making 
capability of a UAV teammate. 

For the (1+1) EA, a policy is represented as collection of 
state-action pairs, where no two pairs in a policy share a state. 

During an epoch, every reached pair corresponding to an 
activated state in the simulation has a 25% chance of being 
mutated by changing the pair’s action to a random one. 
Through trial and error, this mutation rate produced a high 
enough exploration rate to find optimal subtask performing 
policies quickly. When an agent reaches a state that is not 
mapped in its policy, a new pair is created, linking that new 
state to a random action. 

In the (1+1) EA, every layer is given 10,000 epochs to learn 
a layer’s subtask, limiting the entire learning process to 30,000 
epochs and simulations to learn the overall task. Each instance 
is evaluated over 100 runs to create a large enough sample size 
to reduce error. 

The first layer trains the UAVs to refuel. The refueling 
subtask trains the agents to recognize when their individual 
fuel levels are low and how to navigate to the refueling depot, 
land, and refuel. This layer’s simulation initializes the UAVs to 
be 20 cells away from a fuel depot with 20 units of fuel, to 
force the UAVs to be low on fuel. Each UAV receives .25 
points for accomplishing each successive milestone of first 
navigating to a depot, then land, start to refuel, and continue to 
refuel until fuel level was above 90% full. Each simulation run 
lasts for 35 time-steps. To evaluate the entire policy set, 
performance for one simulation is the average score of each 
UAV, where 1.0 means the entire UAV team has mastered the 
subtask of refueling. 

Under the second layer, the (1+1) EA optimizes the UAVs 
policies to learn to take off and survey. This second layer’s 
subtask is the same as the overall UAV Survey task, except the 
simulation lasts 100 time-steps instead of 2000 and the maxi-
mum unique cells to reach is 396. Although the environment 
dimensions remains the same 50x50 grid, the reduction in the 
number of time-steps means the number of possible cells the 
team can reach is 396 (each UAV can reach a maximum of 99 
cells after taking off in the time limit). Similarly, because the 
team is evaluated on the percentage of unique cells navigated 
to and because a refueling UAV would waste time refueling, 
the UAVs do not have to refuel to maximize performance of 
this subtask. 

The limitations of this subtask make this layer critical and 
create layer overlapping. Because the simulation runs for 100 
time-steps, the first and second layer shares states of when a 
UAV is low on fuel. The conflict occurs because the first 
layer’s subtask relies on a UAV to refuel while the second 
layer’s subtask relies on a UAV to survey the environment. 
Although it is acknowledged that the subtasks could be de-
composed in a completely non-overlapping manner, the layer 
configuration is explicitly designed to uncover how layered 
learning responds to the forced conflict between desired 
actions with the shared states. Also, both of these subtasks are 
integral aspects of the overall aggregate task, optimized in the 
third layer. The decomposition allows the agents to master 
these critical and difficult subtasks individually instead of 
learning all of the required steps of each subtask all at once.
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Table 1: AVERAGE POLICY SET COMPOSITION CHANGES PER LAYER 

Comparison Pair Changes Unchanged Pairs New Pairs 
        

  AVG STD AVG STD AVG STD
Layers 1 & 2 14.58 4.65 42.06 7.25 65.27 9.75
Layers 1 & 3 21.77 5.49 34.87 6.84 83.20 10.52
Layers 2 & 3 39.55 10.52 82.36 12.33 17.93 7.81 

        

 
Table 2: AVERAGE SUBTASK PERFORMANCE AFTER EACH LAYER 

 Refuel Take off & Survey UAV Surveying Task 
    

Layer 1 0.87063 0.02907 0.00408 
Layer 2 0.36500 0.73896 0.12144
Layer 3 0.28875 0.43652 0.55824 

    

 

 
Figure 2: Average subtask performance. 

IV. RESULTS 
The imbalance is evident in how the policies are modified to 

favor newer subtasks and in how their changes in composition 
altered proficiencies in older, learned subtasks. First, 
compositional changes are analyzed. Tables 1 displays the 
average state-action pair changes between a layer and one of its 
subsequent layers. From the experiment, an average of 14.58 
pairs are changed between the last epoch of layer 1 and the last 
of layer 2. Therefore, of the approximately 56 shared pairs of 
layers 1 and 2, about 26% of them are modified in the 
optimization of layer 2’s subtask. Similarly, 32% of the 
overlapped pairs of layers 2 and 3 are modified in the final 
layer. 

These composition changes cause subtask performance of 
the first two layers to drastically decrease during the next, 
immediate layer. When learning how to refueling, the subtask's 
proficiency decreases from 87% of optimality earned at the end 
of layer 1 to 37% at the conclusion of layer 2. The second 
layer’s subtask earns a proficiency of 74% optimality but drops 
to 44% in the overall task’s layer. All of the average subtask 
proficiency changes can be found in table 2. 

Additionally, subtask proficiency of the previous layer is 
observed to sharply decrease at the beginning of each new layer. 
Figure 2 plots subtask performance throughout the entire 
learning process, where each 10,000 epochs denotes a layer 
transition. This plot illustrates that after the first transition, re-
fueling proficiency of 0.86 decreases rapidly before stabilizing 
around .38 for the remainder of layer 2. At the same time and 
consequently, performance of the take off and survey subtask 
increase quickly until halting at .74. A similar performance drop 
as the refueling case took place between layers 2 and 3, where 
the second layer’s subtask decreases suddenly after the 20,000th 

epoch, when the performance evaluation criteria switches to the 
overall task. 

Lastly, after observing that the oldest learned subtask from 
layer 1 was the most volatile in terms of subtask performance 
and composition changes, the number of pairs that are reverted 
to layer 1’s state at the end of layer 3 is used as an indicator of 
the damage caused by its subsequent layers. For example, of the 
14.58 pairs that are changed in layer 2, 13.33 are permanently 
damaged at the conclusion of learning, and remain different 
from the first layer. This high rate of permanent damage 
signifies that once a refueling pair is changed, the learning 
algorithm had difficult in reverting the change to restore lost 
proficiency. 

V.  DISCUSSION 
Although purposely designed to demonstrate an imbalance, 

these experiments show that not only do new layers modify 
existing pairs that are shared with other layers, but proficiency 
is modified as well. Because subtask proficiency is not retrained 
in this decomposition, subsequent layers have a high probability 
of modifying existing pairs. This occurrence is detrimental for 
subtasks that see their vital pairs modified in newer layers 
because, as the permanently damaged pair statistics have 
highlighted, the probability for repair is small, only 9%. 

Furthermore, layered learning behaves greedily in these 
experiments by prioritizing policy changes that maximize the 
current layer’s subtask over pair retention for older subtasks. 
This complete prioritization occurs because there is no incentive 
to keep pairs used in older layers, resulting in the learner 
purposely driving older, obtained knowledge out of a policy if it 
conflicts with a pair that improves the latest layer’s subtask. 
This strong affinity for pair changes that lead the policy set 
closer to the latest layer’s subtask optimality results in the 
learner to favor plasticity over stability; consequently, the 
affinity means imbalance can exist in the layered paradigm. 

Additionally, the transitions to new layers with new sub-
tasks have a traumatic effect on the policies trying to converge 
toward optimal performance. These transitions switch the 
learner's priority from optimizing one subtask to another, 
activating the greediness of the learning algorithm. The 
identification of these layer transitions being a significant factor 
of imbalance is noteworthy because these transitions are 
integral to layered learning; without the transitions, layered 
learning cannot guide policies toward solving complex tasks via 
the mastering of simpler problems and transfer learned 
knowledge from one layer to another.  

VI. CONCLUSION 
This work provides a demonstration of a stability-plasticity 

imbalance in the abstract, decomposition-based reinforcement 
learning paradigm of layered learning. Through explicitly 
designed experiments that provide the demonstration, we show 
that the paradigm can heavily favor plasticity, causing the 
learner to drive out important knowledge used to perform older 
subtasks in favor of knowledge needed to optimize more 
recently learned subtasks. 
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Three main causes for the imbalance are identified. First, 
although hypothesized and not surprising, layer overlapping's 
ability to share state-action pairs creates the high likelihood for 
pairs needed in an older layer to be modified by other, 
subsequent layers. This characteristic creates the possibility for 
layers to drive out knowledge that can drastically affect a 
previously learned subtask's performance. Second, without 
incentive to keep older pairs intact, the paradigm and the 
learning algorithm drive out knowledge that conflicts with 
newer subtask performance. Finally, combined with the learner's 
greedy characteristics and lack of incentive to retain older 
knowledge, layer transitions change the learner's priority and 
sets what the learner will optimize. With the lessons learned 
from these experiments, researchers and developers who rely on 
layered learning and similar decomposition-based reinforcement 
learners now know the pitfalls of layer overlapping and the 
causes of the imbalance.  

Future work seeks to mitigate the imbalance's negative 
effects on layered learning. Therefore, upcoming research will 
evaluate existing techniques relied on in artificial neural 
networks for efficacy in subtask proficiency retention and 
overall task performance, such as subtask rehearsal and 
concurrent subtask learning. We target rehearsal and concurrent 
learning because it is clear from the work in this paper that 
mitigation techniques should provide a means of retaining and 
re-introducing particularly successful portions of policies; our 
future work relies on this idea directly. 
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