
A Demonstration of Stability-Plasticity Imbalance in Multi-Agent, Decomposition-
Based Learning

Sean C. Mondesire
Electrical Engineering and Computer Science

University of Central Florida
Orlando, FL. USA
sean@cs.ucf.edu

R. Paul Wiegand
Institute for Simulation and Training

University of Central Florida
Orlando, FL. USA

wiegand@ist.ucf.edu

Abstract— Layered learning is a machine learning paradigm

used in conjunction with direct-policy search reinforcement
learning methods to find high performance agent behaviors for
complex tasks. At its core, layered learning is a decomposition-
based paradigm that shares many characteristics with robot
shaping, transfer learning, hierarchical decomposition, and
incremental learning. Previous studies have provided evidence
that layered learning has the ability to outperform standard
monolithic methods of learning in many cases.

The dilemma of balancing stability and plasticity is a common
problem in machine learning that causes learning agents to
compromise between retaining learned information to perform a
task with new incoming information. Although existing work
implies that there is a stability-plasticity imbalance that greatly
limits layered learning agents’ ability to learn optimally, no work
explicitly verifies the existence of the imbalance or its causes. This
work investigates the stability-plasticity imbalance and
demonstrates that indeed, layered learning heavily favors
plasticity, which can cause learned subtask proficiency to be lost
when new tasks are learned. We conclude by identifying potential
causes of the imbalance in layered learning and provide high level
advice about how to mitigate the imbalance's negative effects.

Keywords— Stability-Plasticity Dilemma, Layered Learning,

Decomposition-based Reinforcement Learning

I. INTRODUCTION
This work provides a demonstration that layered learning, a

sequential, decomposition-based learning paradigm, can be
affected by a stability-plasticity imbalance. The stability-
plasticity dilemma is a common problem in machine learning
that causes learning agents to struggle with finding the right
balance of retaining important information used to perform
previously learned behaviors and tasks while learning to solve
new problems [1]. On the one hand, imbalances often result in
the learner quickly losing proficiency in learned, older tasks in
favor of new, incoming knowledge. While on the other hand,
the imbalance can cause the system to struggle to adapt and
perform newer tasks fast enough to thrive in a reinforcement
environment. This work serves as the first empirical study of the
imbalance in the abstract paradigm of layered learning.
Furthermore, we investigate the causes and effects for the
imbalance in layered learning.

The demonstration is needed because the paradigm is being
successfully used by a subset of the machine learning and

robotics community to develop the behavioral policies of
autonomous agents that solve complex tasks without regard to
such potential issues [2]. Additionally, layered learning shares
many similarities with other established decomposition-based
reinforcement learning (RL) techniques; these similarities
further motivate this work to gain an understanding of the
stability-plasticity dilemma in an abstract paradigm to uncover
potential imbalance issues with other, more commonly used and
domain-specific, algorithms that share core decomposition-
based fundamentals with layered learning. Also, because other
stability-plasticity studies examine very specific and specialized
decomposition-based learning algorithms (typically including
artificial neural networks), this work’s main contribution is its
investigation of the dilemma in a broader scope of
reinforcement learning.

By analyzing the dilemma with a paradigm that can employ
a diverse range of machine learning algorithms, the results of
this work can be of value to similar learning methods. At the
very least, this demonstration provides evidence that an
imbalance can drastically affect learning efficiencies and
encourage investigations in similar learning approach, an area
that is lacking in attention in the decomposition-based
reinforcement learning community.

In the presented work, we construct a direct-policy search
multi-agent problem with general properties common to many
RL problems. We use task and subtask performance to clearly
demonstrate that layered learning can be seriously impacted by
a stability-plasticity imbalance. We conclude by identifying
causes of the imbalance and outline future work that aims to
mitigate the negative effects of the imbalance phenomenon.

II. BACKGROUND
Stone and Veloso [2] introduced layered learning as a ma-

chine learning paradigm that relies on task decomposition to
simplify a complex task into manageable components
(subtasks). This paradigm should not be confused with other
learning techniques, such as multi-layered neural networks,
that rely on layers in their own processes.

At a high level, layered learning is given a decomposition
of one complex task from an external source, the developer.
The process then takes the decomposition’s series of simpler
subtasks and modifies a decision-making policy to perform
each subtask sequentially. In machine learning, a policy is a
mapping of states to actions that determines how an agent be-

2015 IEEE 14th International Conference on Machine Learning and Applications

978-1-5090-0287-0/15 $31.00 © 2015 IEEE

DOI 10.1109/ICMLA.2015.106

1070

2015 IEEE 14th International Conference on Machine Learning and Applications

978-1-5090-0287-0/15 $31.00 © 2015 IEEE

DOI 10.1109/ICMLA.2015.106

1070

2015 IEEE 14th International Conference on Machine Learning and Applications

978-1-5090-0287-0/15 $31.00 © 2015 IEEE

DOI 10.1109/ICMLA.2015.106

1070

haves. A policy ultimately determines an agent’s effectiveness
at performing desired tasks and is the target of learning.

A single layered learning instance, where an agent is
responsible for learning a single complex task, is comprised of
a collection of layers, the set L. The agent learns to perform the
complex task by sequentially iterating through each layer in L.
Defined in (1), each subtask learning phase is a layer (Li),
where the agent is given a training environment, performance
evaluation function, and set of training examples designed for
learning the subtask (Ti). The layer also accepts as input the set
of all state variables for the learner to analyze its environment
(Fi), a set of all possible actions the learning agent can make
(Oi), and a machine learning technique to learn the subtask
(Mi). The final input hi-1 is the initial policy that will be
optimized to perform subtask Ti. Once the layer is complete,
the outputted policy (hi) is used as the initial policy for the
subsequent layer (Li+1), creating a dependency of learning
among the layers. Finally, in each layer, the agent optimizes its
policy to perform subtask Ti until a halting condition is
satisfied. The halting condition determines when the agent
transitions to the next layer to learn a new subtask.

 Li = (Fi, Oi, Ti, Mi, hi-1) (1)

Two configurations in which manner a policy can be
developed in layered learning are layer isolation and layer
overlapping. In layer isolation, independent sub-policies are
adapted to learn subtasks, and the learning in one layer does not
alter the sub-policy used in another. In layer overlapping, two
or more layers can modify shared policy information.
Intuitively, layer overlapping mechanisms run the highest risk
of being impacted by a stability-plasticity imbalance, so we
focus our attention on such cases. Still, there are advantages to
using overlapping, including the removal of isolation’s need for
sub-policies, less design time dedicated to guaranteeing layers
are truly isolated, reduction in redundant learning because
subtasks can share basic, common information that does not
have to be relearned, and increased freedom in how the policy
transfers learned knowledge from one layer to the next.

Layered learning was introduced by Stone and Veloso [3]
and extended in [2] to train simulated, autonomous agents to
play the complex game of soccer. Since then, the learning
paradigm has been used to develop the decision-making
policies for a range of diverse problems.

Early layered learning works examine the feasibility of the
paradigm and focus mostly on comparing the paradigm’s
ability to develop policies against standard, monolithic
learning. Monolithic learning is a fair comparison control
because in a learning scheme that employs it, there is no
decomposition and the agent must learn the complex task in
one learning phase, contradicting the core principles of layered
learning. These works include those of Hsu and Gustafson’s [4,
5] and Gustafson and Hsu’s [6] layered learning development
of Keep-away (a soccer variant) playing agents and Jackson
and Gibbons’ [7] study of layered learning’s ability to solve
Boolean-logic problems and the impact of using
decompositions based on lower-ordered sub-problems. These
studies demonstrate that layered learning can often rival

monolithic learning in producing better performing policies
that solve complex tasks.

Other works examine layered learning in other problem
areas: Whiteson and Stone [8] introduced concurrent layered
learning, a coevolutionary adaptation to layered learning, and
Cherubini, Giannone, and Iocchi [9] and Fidelman and Stone
[10] study the feasibility of using layered learning on real,
physical robots. Both studies demonstrate that layered learning
can be used to teach physical robots how to perform complex
tasks.

The majority of layered learning works use layer isolation
to safeguard layers from modifying state-action pairs of the
policy relied on by other layers. Two negatives of using layer
isolation are that 1) it requires developers to dedicate design
time to plan for independent sub-policies to be developed and
assigned to each layer and 2) the agent must be able to
recombine all of the sub-policies into one policy to perform the
overall task.

Two works that use the alternative to layer isolation, layer
overlapping, are the aforementioned Jackson and Gibbons’ [7]
study of layered learning to solve Boolean-logic problems and
Mondesire and Wiegand’s [11] work that uses layered learning
to train predators in a predator-prey scenario. Without
explicitly studying stability and plasticity, this latter work’s
findings suggest that layered learning can suffer from a
stability-plasticity imbalance. The study’s experiment results
show that as the predator agent learned a new subtask with
layer overlapping, the performance of a previously learned
subtask plummets, ultimately negatively affecting overall task
performance. This loss in the oldest subtask’s proficiency
showed that layers can be detrimental to each other and the
time and effort required to regain lost important information is
wasted opportunity to search for more optimal solutions
instead of repairing what was lost.

Unfortunately, there is no study in the literature that clearly
and explicitly demonstrates that proficiency loss takes place as
layered learning agents learn to perform new subtasks.
Moreover, as layered learning grows in use and popularity, its
true potential is limited by our lack of understanding of such
performance losses. Because layered learning shares many
features with other learning methods, there is much to be
learned about challenges that face layered learning by
examining the difficulties faced by other methods.
Alternatively, perhaps deeper understanding can be gained in
other methods by examining these issues in layered learning.

III. METHODOLOGY
The goals of this work are to demonstrate that layered

learning with layer overlapping is susceptible to a stability-
plasticity imbalance and to identify the causes of the
imbalance. Through these experiments, this work uncovers that
layered learning can easily favor plasticity, causing newly
acquired knowledge to drive out critical information needed to
perform subtasks of earlier layers. The driven out knowledge is
negatively forgotten [12], which causes older subtasks’
performance to decrease drastically. The loss of older subtask
proficiency is significant because it negatively affects the

107110711071

performance of the complex task that relies heavily on the lost
information and the ability to perform its forgotten subtasks.

At the heart of layered learning are the layer transitions,
which change the learning focus from one subtask to another.
Experiment results conclude that these performance evaluation
changes can negatively affect the learner’s ability to maintain
proficiency in older subtasks as newer ones are learned in
decomposition with layer overlapping.

To demonstrate the susceptibility of a stability-plasticity
imbalance in layered learning with overlapping, experiments
applied to a multi-agent problem are conducted. The
experiments are explicitly design to demonstrate that as the
performance evaluation functions transitions from one subtask
to another, the policy experiences drastic changes to its state-
action pairs, subtask and task performance degrades, and
computational effort is wasted when a policy attempts to regain
lost proficiency.

Specifically, in this studied problem, each agent represents
a quadcopter unmanned aerial vehicle (UAV) that must learn
when and how to take off and land, move to a coordinate in the
environment, refuel, and transmit reached coordinates to its
UAV teammates. Quadcopters are similar to remote controlled
helicopters with four rotors instead only one. They are known
for their mobility and ability to change direction and heading
quickly. The problem is deliberately abstracted to keep the
focus on the study of plasticity.

A. The UAV Surveying Problem
In this surveying task, four UAVs are initially grounded at

four different corners of the 50x50 two-dimensional discrete
grid environment, depicted in Fig. 1. In each run of the
simulation with this task, performance is evaluated on the
percentage of unique grid coordinates the UAV team has
navigated to out of the 2500 total number of cells in 2000 time-
steps. At every time-step, each UAV determines its state,
selects and performs an action with that corresponding state
from its policy. UAVs have the movement abilities to take off,
land, and move towards any coordinate in the environment, one
cell at a time.

UAVs remain active in the simulation as long as they have
fuel. With each time-step a UAV is in flight, its fuel level
depletes by one unit. If a UAV’s fuel level reaches zero, the
UAV becomes inactive and can no longer execute actions, such
as movement to survey the environment or refuel. To replenish
depleting fuel levels, a UAV must navigate back to a refueling
depot (located on the ground of each of the four corners of the
grid), land, and explicitly execute the “refuel” action. Refueling
replenishes the UAV 10 units per time-step the action is
executed. Initially, a UAV has 100 units of fuel and refueling
never exceeds a level of 100 units. Multiple UAVs can refuel
from the same depot at the same time.

The surveying problem requires collaboration among the
UAV teammates to maximize the task’s performance: no single
UAV can navigate to every cell in the environment in the
limited amount of time and duplication with UAVs covering
the same cell wastes time. To facilitate collaboration, each

Figure 1. A screen capture of the UAV simulation (at 10th of the scale)

UAV maintains a list of coordinates the team has visited and
may execute the action “transmit coordinates” to broadcast a
complete history of all of the coordinates that UAV has
reached during the simulation up until the current time-step.
This broadcast is instant and is guaranteed to reach each of the
other UAVs.

Because each UAV must decide when to transmit and when
to perform other actions, a UAV also contains a buffer of
coordinates it has surveyed since its last transmit action was
executed. Sub-states, such as “is buffer size at least 5”, exist so
each UAV can determine their own thresholds of when to
transmit unshared, reached coordinates with their teammates.

The problem is similar to those studied in other
reinforcement learning and direct-policy search works,
including UAV navigation and search-and-rescue problems.
This UAV exploration problem was selected because of its task
complexity, straight-forward decomposition into subtasks,
requirement of UAV collaboration among teammates to solve
the problem optimally, and direct mapping to problems used in
the real world.

B. Learning Configuration
To learn to solve the problem, a decomposition of the UAV

surveying problem and a layer configuration, including a
subtask sequence, training scenarios, and halting conditions are
used with layered learning to optimize the UAV policies. The
employed decomposition is as follows: the agent team first
learns to refuel in layer 1, take off and survey the environment
in layer 2, and lastly, the overall task of surveying and
refueling when necessary in the final, aggregate layer of layer
3.

The process of layered learning takes one set of policies,
one policy for each UAV, and passes it into layer 1 for
optimization on the refueling subtask. In that layer, a learning
algorithm is used to optimize performance on the subtask by
repeatedly running the refueling simulation and modifying the
policies to map states to appropriate actions. This evaluation
and modification process repeats for a set number of iterations,
called epochs. We use the term epoch to denote a generation in
the employed evolutionary algorithm. The refueling optimized
policy set is then fed into the second layer, which does the
same process as layer 1 but optimizes the policy set on the take
off and survey subtask. Finally, the policy set outputted in
layer 3 is optimized on the overall task. Through this
decomposition, the aim is to gradually learn each important

107210721072

aspect of the overall task in incremental phases of learning and
have a policy set that solves the overall task at the end of the
last epoch of layer 3.

C. Policy Representation:
Each UAV can perform exactly one action for each state that

it is in at any given time-step. A UAV’s state is the collective
value of the UAV’s internal conditions, called sub-states,
similar to a Boolean array where each element corresponds to a
specific sub-state value. A sub-state is a true or false value of a
condition the UAV has at a time-step. For example, the sub-
state “is grounded” is true if the UAV is on the ground, not in
flight. At every time-step, each UAV evaluates all of its sub-
states and represents that collection as a single state (similar to
converting a Boolean array into a decimal value). Table I lists
all of the UAV sub-states and table II lists all of the actions.

The policy is a direct state-action mapping that links each
state to one of seven actions that UAV can perform. In this
problem, there are 7 unique actions with 8 sub-states. The
simulation ignores impossible or redundant actions, such as
landing when already grounded or flying to a new coordinate
when grounded. The actions are to move to the closes unvisited
coordinate, take off, land, NOP (remain idle), move towards
the closest fuel depot, refuel, and to transmit coordinates. For
the states, each UAV checks its own conditions, which are the
following: is my fuel level low, am I grounded, am I at a fuel
depot, and is my fuel level above 90% full. Also, there are four
states asking if the UAV’s transmission buffer size was at least
1, 5, 10, or 20 coordinates full.

D. (1+1) Evolutionary Algorithm
A (1+1) Evolutionary Algorithm [(1+1) EA] is employed

with layered learning to facility policy optimization over the
UAV problem. A (1+1) EA is a simplified type of EA where
one genetic operator is used to manipulate the only individual
in the population. Borisovsky and Eremeev [13] and Wegener
and Witt [14] studied (1+1) EA performance and provide
additional details on the approach. The algorithm is chosen
because it is a simple, yet effective, learning technique.
Although the EA is well-studied, the stability-plasticity
dilemma's effects and causes in this type of learning lacks
investigation and understanding. Further, because we wish to
focus on layered learning in general and not the underlying
machine learning methods, we chose as simple of an example
from direct-policy search technique as possible. These
experiments demonstrate that although the employed learning
algorithms can introduce their own biases toward stability or
plasticity, it is layered learning’s layer transitions that cause
performance to negatively be affected by an imbalance with the
decomposition-based approach.

The (1+1) EA uses a single “parent” candidate solution,
generates a “child” candidate solution via a “mutation” genetic
operator, and replaces the parent with the child if it performs at
least as well as the parent. The sole parent is the set of policies
of the team, where each policy represents the decision making
capability of a UAV teammate.

For the (1+1) EA, a policy is represented as collection of
state-action pairs, where no two pairs in a policy share a state.

During an epoch, every reached pair corresponding to an
activated state in the simulation has a 25% chance of being
mutated by changing the pair’s action to a random one.
Through trial and error, this mutation rate produced a high
enough exploration rate to find optimal subtask performing
policies quickly. When an agent reaches a state that is not
mapped in its policy, a new pair is created, linking that new
state to a random action.

In the (1+1) EA, every layer is given 10,000 epochs to learn
a layer’s subtask, limiting the entire learning process to 30,000
epochs and simulations to learn the overall task. Each instance
is evaluated over 100 runs to create a large enough sample size
to reduce error.

The first layer trains the UAVs to refuel. The refueling
subtask trains the agents to recognize when their individual
fuel levels are low and how to navigate to the refueling depot,
land, and refuel. This layer’s simulation initializes the UAVs to
be 20 cells away from a fuel depot with 20 units of fuel, to
force the UAVs to be low on fuel. Each UAV receives .25
points for accomplishing each successive milestone of first
navigating to a depot, then land, start to refuel, and continue to
refuel until fuel level was above 90% full. Each simulation run
lasts for 35 time-steps. To evaluate the entire policy set,
performance for one simulation is the average score of each
UAV, where 1.0 means the entire UAV team has mastered the
subtask of refueling.

Under the second layer, the (1+1) EA optimizes the UAVs
policies to learn to take off and survey. This second layer’s
subtask is the same as the overall UAV Survey task, except the
simulation lasts 100 time-steps instead of 2000 and the maxi-
mum unique cells to reach is 396. Although the environment
dimensions remains the same 50x50 grid, the reduction in the
number of time-steps means the number of possible cells the
team can reach is 396 (each UAV can reach a maximum of 99
cells after taking off in the time limit). Similarly, because the
team is evaluated on the percentage of unique cells navigated
to and because a refueling UAV would waste time refueling,
the UAVs do not have to refuel to maximize performance of
this subtask.

The limitations of this subtask make this layer critical and
create layer overlapping. Because the simulation runs for 100
time-steps, the first and second layer shares states of when a
UAV is low on fuel. The conflict occurs because the first
layer’s subtask relies on a UAV to refuel while the second
layer’s subtask relies on a UAV to survey the environment.
Although it is acknowledged that the subtasks could be de-
composed in a completely non-overlapping manner, the layer
configuration is explicitly designed to uncover how layered
learning responds to the forced conflict between desired
actions with the shared states. Also, both of these subtasks are
integral aspects of the overall aggregate task, optimized in the
third layer. The decomposition allows the agents to master
these critical and difficult subtasks individually instead of
learning all of the required steps of each subtask all at once.

107310731073

Table 1: AVERAGE POLICY SET COMPOSITION CHANGES PER LAYER

Comparison Pair Changes Unchanged Pairs New Pairs

 AVG STD AVG STD AVG STD
Layers 1 & 2 14.58 4.65 42.06 7.25 65.27 9.75
Layers 1 & 3 21.77 5.49 34.87 6.84 83.20 10.52
Layers 2 & 3 39.55 10.52 82.36 12.33 17.93 7.81

Table 2: AVERAGE SUBTASK PERFORMANCE AFTER EACH LAYER

 Refuel Take off & Survey UAV Surveying Task

Layer 1 0.87063 0.02907 0.00408
Layer 2 0.36500 0.73896 0.12144
Layer 3 0.28875 0.43652 0.55824

Figure 2: Average subtask performance.

IV. RESULTS
The imbalance is evident in how the policies are modified to

favor newer subtasks and in how their changes in composition
altered proficiencies in older, learned subtasks. First,
compositional changes are analyzed. Tables 1 displays the
average state-action pair changes between a layer and one of its
subsequent layers. From the experiment, an average of 14.58
pairs are changed between the last epoch of layer 1 and the last
of layer 2. Therefore, of the approximately 56 shared pairs of
layers 1 and 2, about 26% of them are modified in the
optimization of layer 2’s subtask. Similarly, 32% of the
overlapped pairs of layers 2 and 3 are modified in the final
layer.

These composition changes cause subtask performance of
the first two layers to drastically decrease during the next,
immediate layer. When learning how to refueling, the subtask's
proficiency decreases from 87% of optimality earned at the end
of layer 1 to 37% at the conclusion of layer 2. The second
layer’s subtask earns a proficiency of 74% optimality but drops
to 44% in the overall task’s layer. All of the average subtask
proficiency changes can be found in table 2.

Additionally, subtask proficiency of the previous layer is
observed to sharply decrease at the beginning of each new layer.
Figure 2 plots subtask performance throughout the entire
learning process, where each 10,000 epochs denotes a layer
transition. This plot illustrates that after the first transition, re-
fueling proficiency of 0.86 decreases rapidly before stabilizing
around .38 for the remainder of layer 2. At the same time and
consequently, performance of the take off and survey subtask
increase quickly until halting at .74. A similar performance drop
as the refueling case took place between layers 2 and 3, where
the second layer’s subtask decreases suddenly after the 20,000th

epoch, when the performance evaluation criteria switches to the
overall task.

Lastly, after observing that the oldest learned subtask from
layer 1 was the most volatile in terms of subtask performance
and composition changes, the number of pairs that are reverted
to layer 1’s state at the end of layer 3 is used as an indicator of
the damage caused by its subsequent layers. For example, of the
14.58 pairs that are changed in layer 2, 13.33 are permanently
damaged at the conclusion of learning, and remain different
from the first layer. This high rate of permanent damage
signifies that once a refueling pair is changed, the learning
algorithm had difficult in reverting the change to restore lost
proficiency.

V. DISCUSSION
Although purposely designed to demonstrate an imbalance,

these experiments show that not only do new layers modify
existing pairs that are shared with other layers, but proficiency
is modified as well. Because subtask proficiency is not retrained
in this decomposition, subsequent layers have a high probability
of modifying existing pairs. This occurrence is detrimental for
subtasks that see their vital pairs modified in newer layers
because, as the permanently damaged pair statistics have
highlighted, the probability for repair is small, only 9%.

Furthermore, layered learning behaves greedily in these
experiments by prioritizing policy changes that maximize the
current layer’s subtask over pair retention for older subtasks.
This complete prioritization occurs because there is no incentive
to keep pairs used in older layers, resulting in the learner
purposely driving older, obtained knowledge out of a policy if it
conflicts with a pair that improves the latest layer’s subtask.
This strong affinity for pair changes that lead the policy set
closer to the latest layer’s subtask optimality results in the
learner to favor plasticity over stability; consequently, the
affinity means imbalance can exist in the layered paradigm.

Additionally, the transitions to new layers with new sub-
tasks have a traumatic effect on the policies trying to converge
toward optimal performance. These transitions switch the
learner's priority from optimizing one subtask to another,
activating the greediness of the learning algorithm. The
identification of these layer transitions being a significant factor
of imbalance is noteworthy because these transitions are
integral to layered learning; without the transitions, layered
learning cannot guide policies toward solving complex tasks via
the mastering of simpler problems and transfer learned
knowledge from one layer to another.

VI. CONCLUSION
This work provides a demonstration of a stability-plasticity

imbalance in the abstract, decomposition-based reinforcement
learning paradigm of layered learning. Through explicitly
designed experiments that provide the demonstration, we show
that the paradigm can heavily favor plasticity, causing the
learner to drive out important knowledge used to perform older
subtasks in favor of knowledge needed to optimize more
recently learned subtasks.

107410741074

Three main causes for the imbalance are identified. First,
although hypothesized and not surprising, layer overlapping's
ability to share state-action pairs creates the high likelihood for
pairs needed in an older layer to be modified by other,
subsequent layers. This characteristic creates the possibility for
layers to drive out knowledge that can drastically affect a
previously learned subtask's performance. Second, without
incentive to keep older pairs intact, the paradigm and the
learning algorithm drive out knowledge that conflicts with
newer subtask performance. Finally, combined with the learner's
greedy characteristics and lack of incentive to retain older
knowledge, layer transitions change the learner's priority and
sets what the learner will optimize. With the lessons learned
from these experiments, researchers and developers who rely on
layered learning and similar decomposition-based reinforcement
learners now know the pitfalls of layer overlapping and the
causes of the imbalance.

Future work seeks to mitigate the imbalance's negative
effects on layered learning. Therefore, upcoming research will
evaluate existing techniques relied on in artificial neural
networks for efficacy in subtask proficiency retention and
overall task performance, such as subtask rehearsal and
concurrent subtask learning. We target rehearsal and concurrent
learning because it is clear from the work in this paper that
mitigation techniques should provide a means of retaining and
re-introducing particularly successful portions of policies; our
future work relies on this idea directly.

VII. ACKNOWLEDGEMENT
The authors would like to thank the Florida Education Fund

and the McKnight Fellowship for their support. Additionally,
the authors thank and appreciate the high performance
computing capabilities received from the Advanced Research
Computing Center (ARCC) in the Institute for Simulation &
Training at the University of Central Florida. Access to
STOKES has been instrumental to the research performed in
this work.

REFERENCES

[1] M. McCloskey and N. Cohen, “Catastrophic interference in connectionist

networks: The sequential learning problem,” The psychology of learning
and motivation, vol. 24, pp. 109–165, 1989.

[2] P. Stone and M. Veloso, “Layered learning,” in Proceedings of the
Eleventh European Conference on Machine Learning. Springer Verlag,
1999, pp. 369–381.

[3] P. Stone and M. Veloso, “A layered approach to learning client behaviors
in the robocup soccer server,” Applied Artificial Intelligence, vol. 12, pp.
165–188, 1998. [Online]. Available: http://www.cs.utexas.edu/users/ai-
lab/pub-view.php?PubID=126580

[4] W. H. Hsu and S. M. Gustafson, “Genetic programming for layered
learning of multi-agent tasks,” in 2001 Genetic and Evolutionary
Computation Conference Late Breaking Papers, E. D. Goodman, Ed., San
Francisco, California, USA, 9-11 July 2001, pp. 176–182. [Online].
Available: http://www.cs.nott.ac.uk/smg/research/publications/gecco-
2001.pdf

[5] W. H. Hsu and S. M. Gustafson, “Genetic programming and multi-agent
layered learning by reinforcements,” in Genetic and Evolutionary
Computation Conference. Morgan Kaufmann, 2002, pp. 764–771.

[6] S. M. Gustafson and W. H. Hsu, “Layered learning in genetic
programming for a cooperative robot soccer problem.” in EuroGP, ser.
Lecture Notes in Computer Science, J. F. Miller, M. Tomassini, P. L.
Lanzi, C. Ryan, A. Tettamanzi, and W. B. Langdon, Eds., vol. 2038.
Springer, 2001, pp. 291–301.

[7] D. Jackson and A. Gibbons, “Layered learning in boolean gp problems,”
148–159, 2007.

[8] S. Whiteson and P. Stone, “Concurrent layered learning,” in Proceedings
of the Eleventh European Conference on Machine Learning. Springer
Verlag, 2003, pp. 369–381.

[9] A. Cherubini, F. Giannone, and L. Iocchi, “Robocup 2007: Robot soccer
world cup xi,” U. Visser, F. Ribeiro, T. Ohashi, and F. Dellaert, Eds.
Berlin, Heidelberg: Springer-Verlag, 2008, ch. Layered Learning for a
Soccer Legged Robot Helped with a 3D Simulator, pp. 385–392.

[10] P. Fidelman and P. Stone, “Layered learning on a physical robot,” 2005.
[11] S. Mondesire and R. P. Wiegand, “Evolving a non-playable character

team with layered learning,” in IEEE Symposium on Computational
Intelligence in Multicriteria Decision-Making (MDCM), 2011, pp. 52–
59.

[12] S. Mondesire and R. P. Wiegand, “Forgetting classification and
measurement for decomposition-based reinforcement learning,” in
Proceedings of The 15th International Conference on Artificial
Intelligence (ICAI’13), 2013.

107510751075

