
Forgetting Beneficial Knowledge in Decomposition-Based
Reinforcement Learning Using Evolutionary Computation

Sean Mondesire1 and R. Paul Wiegand2

1College of Engineering and Computer Science, University of Central Florida, Orlando, Florida, USA
2Institute for Simulation and Training, University of Central Florida, Orlando, Florida, USA

Abstract— This work demonstrates that critical informa-
tion can easily and prematurely be removed from a
decomposition-based reinforcement learning system. One
possible effect to the forgotten knowledge is the complete
loss in ability to solve a previously learned problem when
the system is given a new problem to optimize. In artificial
neural networks, this is called catastrophic forgetting and
has been shown to cripple performance. We study this phe-
nomenon to understand its effects on problem performance
and to investigate suspected consequences experienced by
other decomposition-based approaches. Furthermore, us-
ing an abstract decomposition-based reinforcement learning
paradigm with a simple evolutionary algorithm, we analyze
the role stability-plasticity imbalance has in the premature
loss of critical knowledge.

Keywords: Stability-Plasticity Dilemma, Decomposition-Based
Reinforcement Learning, Evolutionary Computation

1. Introduction
Using evolutionary computation, we demonstrate the un-

intentional loss of beneficial knowledge in decomposition-
based reinforcement learning. This premature removal of
critical information has had disastrous effects on perfor-
mance and learning rates in other learning genres. By
providing this demonstration, we highlight the challenge to
those who use decomposition-based reinforcement learning,
identify potential causes, and provide detailed analysis of
the effects of forgetting. Additionally, the reinforcement
learning and evolutionary computation communities gain a
deeper understanding of why this type of forgetting can
be so devastating to learning effectiveness. Finally, this
demonstration is needed to uncover potential performance-
hindering pitfalls future learning systems can prepare for.

Reinforcement learning (RL) is a machine learning area
that solves problems based on maximizing the expected
cumulative reward of a system’s actions [1]. Decomposition-
based reinforcement learning (DBRL) is a RL method that
optimizes a learning system’s action-selection by solving a
series of simpler subproblems to solve a complex problem.
Hierarchical abstract machines [2], MAXQ [3], and layered
learning [4] are examples of DBRL techniques used to train
computer-based agents to solve complex problems.

One challenge of DBRL is retaining the ability to solve
previously learned problems (stability) while learning to
solve new ones (plasticity). This balancing act is called the
stability-plasticity dilemma [5]. Systems that favor stability
may have difficulty in adapting to learn how to solve new
problems quickly; on the other hand, a preference for plas-
ticity can result in the rapid loss of solutions to previously
learned problems. It is this imbalance that favors plasticity
and the loss of beneficial knowledge, critical information that
improves performance of a solution, that we are focused on
in this work.

Existing literature reveals a preference for plasticity in
artificial neural networks can severely hinder performance
of a learning system [6], [7]. The problem arises when
a network is optimized on a set of inputs to solve one
problem, then optimizes its activation weights on a new
problem’s input. The second set of inputs causes the network
to override weights necessary to solve first problem. This
imbalance for plasticity can be extremely detrimental to
earlier learned problems to a point where performance of
the first problem is completely lost. This occurrence is called
catastrophic forgetting [8].

Previous work in HBRL using evolutionary computation
methods have suggested and demonstrated that catastrophic
forgetting can occur in the learning approach. For example,
in a direct policy search used to optimize autonomous agent
policies in a predator-prey scenario, experiments have shown
that previously learned proficiency of critical skills can drop
significantly when an agent learned a new skill [9]. Because
each skill was vital in solving the problem the agents were
learning, overall performance and the learning rate suffered.
Though the work did not explicitly focus on forgetting
phenomenon, the work’s experiment results suggest that a
stability-plasticity imbalance was the cause of the knowledge
loss.

In a second work, catastrophic forgetting in HBRL using
an evolutionary algorithm was analyzed while verifying
forgetting diagnostic and measurement metrics [10]. The
experiments demonstrated that the optimization of new
problems drove out critical, older knowledge. This caused
previously learned solutions of older problems to be lost
and older problem performance to drastically decrease. The
work used contrived Boolean-logic problem that purposely
contained conflicting subproblems, ensuring older beneficial



knowledge would be replaced by new, conflicting informa-
tion.

In this work, we demonstrate the implicit premature loss
of beneficial knowledge in DBRL using simple, well-crafted
methods and problems. This work is different from others
because it explicitly studies the loss of beneficial knowledge
while learning. Additionally, it uses standard optimization
problems that are not contrived to demonstrate forgetting in
this area of RL.

To achieve the demonstration goal, we use the abstract
DBRL paradigm of layered learning with a (1+1) Evolu-
tionary Algorithm ([1+1] EA) to solve two Boolean-logic
problems. Layered learning was selected because of its
qualities shared with many other RL techniques, including
robot shaping and transfer and incremental learning. Because
of these shared characteristics, demonstrating catastrophic
forgetting in layered learning may lead to important stability-
plasticity findings in related approaches. A simple (1+1)
EA is used because it reduces complexity to the employed
learning algorithm and makes experiment results easier to
interpret. By accomplishing our goal, we will provide a
better understanding of what causes the imbalance and its
the effects.

2. Related Work
Catastrophic forgetting is caused by the premature re-

moval of critical information relied on for problem solving
from a system. The challenge is trying to understand what
causes the premature knowledge loss.

Several methods have had success in trying to delay the
loss of important knowledge or regain forgotten informa-
tion. These methods include the use of deletion strategies,
complementary learning systems, and rehearsal techniques,
to name a few.

Deletion strategies are mechanisms used to determine
when a pair is removed from a policy. Some strategies
include random, frequency, temporal, spatial, and utility-
based removal.

Rehearsal techniques repeat the optimization of a prob-
lem to reintroduce forgotten knowledge, reinforce solutions
previously learned, or further improve the current problem
solving ability [11], [12]. By repeating the optimization of
a problem, a system can revert policy changes to mappings
that increased performance of a solution.

Complementary learning systems have shown measurable
success in preventing complete proficiency loss in neural
networks. The system applies dual-memory storage regions
to a network originally with one, in a manner that is
similar to short- and long-term memory in natural systems.
Examples of these two-phased learning systems include
Hattori’s use of a hippocampus-neocortical configuration
with a Hopfield network [13], pseudorehearsal [11], pseudo-
recurrent networks [14].

These discussed works demonstrate that there is a for-
getting problem in other learning systems and provide
mitigation techniques; unfortunately, the same amount of
attention has not been given to DBRL. Two works that
explore forgetting in this type of learning are in [9], [10].
Both works combine layered learning, an abstract DBRL
paradigm, with an evolutionary algorithm to facility learning
of complex problems.

The first work studies the effectiveness of a DBRL when
applied to a direct policy search to train autonomous non-
playable characters (NPCs) in a predator-prey based video
game [9]. The study decomposes a predator behavior into
three subproblems and sequentially trains the NPC policies
on each. The result shows that as the performance crite-
rion changes during the optimization of each subproblem,
performance of an older subproblem decreases. The work
concludes that the learner’s sub-optimal performance, which
is compared to a monolithic learner, is caused by the
decreases in subproblem performance.

The second work introduces two performance-based for-
getting metrics [10]. The metrics, direct (DFM) and max-
imized (MFM) forgetting metrics, are proposed to classify
and measure a type of forgetting that is occurs in an RL
system. To validate and verify the metrics, experiments use
layered learning with a (1+1) EA to optimize a bit-string over
the leading ones trailing zeros (LOTZ) problem. LOTZ and
the employed decomposition of subproblems are contrived
to purposely drive out older information from the system
by having conflicting subproblems optimize on between
consecutive layers. Experiment results show performance
of the LOTZ problem suffers because critical subproblem
performance decreases. The work concludes that under these
conditions, the metrics are validated and that a demonstration
of forgetting in the abstract DBRL system took place.

The research in this paper is an extension of these two
works ([9], [10]) and explicitly demonstrates the loss of
beneficial knowledge in an DBRL system. To do so, we
use two completely different, less contrived Boolean-logic
problems to show the forgetting pitfalls and challenges of an
RL system. Furthermore, we purposely avoid all mitigation
techniques to study what happens when nothing is explicitly
in place to safeguard the learning system.

3. Methodology
To demonstrate forgetting, we use layered learning in

combination with an evolutionary algorithm to solve two
Boolean-logic problems. The objective is to show that as
the learner optimizes a solution for a new problem, per-
formance of an older, previously learned problem signif-
icantly decreases. It is suspected that several factors will
cause beneficial knowledge to be driven out of the system,
including subproblem conflict and the greedy nature of
the employed algorithm. This investigation will determine



the causes of catastrophic forgetting under these simple
experiment conditions.

Layered learning is an abstract machine learning paradigm
that solves a complex problem by incrementally optimiz-
ing performance of simpler sub-problems [15], [4]. The
paradigm has been used to train real and simulated au-
tonomous robots and computer-based systems to solve a va-
riety of complex problems, such as performing motor-skills
and playing robotic soccer [16], [17], [18]. The paradigm
learns by establishing and then sequentially iterating through
a set of layers. Each layer organizes a learning plan by indi-
cating the subproblem to optimize, the training scenario and
conditions for that optimization, and the halting condition to
signal when to proceed to the next layer, each predefined by
the developer. The paradigm is abstract because it provides
a general process of how to solve a complex problem
using decomposition. Therefore, layered learning is not a
machine learning algorithm but instead uses existing learning
algorithms to facility learning.

We combine layered learning with a (1+1) evolutionary
algorithm ([1+1] EA) to provide our demonstration. The
(1+1) EA is a simple EA that uses one genetic operator
to modify the sole individual in the population [19], [20].
Because the employed learning algorithm only has one
operator and individual, the learning process is less compli-
cated, allows for easier interpretation of what occurs during
problem optimization, and focuses on the decomposition
instead of the underlying algorithm.

This learning system optimizes a 128-bit long bit-string to
solve two Boolean-logic problems: OneMax and Spin Glass.
These problems were selected because for their simplicity
and difference in linearity. OneMax is a linear function that
has become a standard optimization problem in machine
learning. Spin Glass is a natural non-linear problem that
is not designed to demonstrate forgetting. By using these
completely different problems, we demonstrate that the
unintentional loss of beneficial knowledge can occur under
conditions on opposite sides of the linearity spectrum.

Finally, we recognize that these two Boolean-logic prob-
lems are optimization problems. We use these simple prob-
lems and bit-string representation to symbolize more com-
plex and common RL problems and representations. For
instance, the bit-string may abstractly represent a policy in a
RL’s direct policy search. Here, each bit represents a state-
action mapping (a pair) an agent can perform at any decision
point, while the bit-string is the policy (the collection of
pairs). Optimization of the bit-string on a Boolean-logic
problem could then correspond to the optimization of an
autonomous agent’s policy on a RL multi-agent system
problem.

3.1 OneMax
OneMax is a standard linear test problem that rewards the

bit string for the number of 1 bits it contains, where the all-

one string is optimal. The OneMax performance function is
defined in Equation 1.

x ∈ {0, 1}n, OneMax(x) =
1

n

n∑
i=1

xi (1)

3.2 Spin Glass
In the Spin Glass problem the bit string is rewarded for

every occurrence where consecutive bits and the first and
last bits differ [21]. The Spin Glass performance function is
defined in Equation 1, where ⊕ represents exclusive-or (xor).
This problem represents natural problems with interacting,
non-linear relationships between individual decisions.

x ∈ {0, 1}n, SpinGlass(x) = 1

n
(

n−1∑
i=1

(xi⊕xi+1)+(xn⊕x1))

(2)

Table 1: Task and Subproblem Descriptions

Subproblem Maximization Objective Description
OneMax One bits in the entire string.
FirstHalfOneMax Ones in the first half of the string.
SecondHalfOneMax Ones in the second half of the string.
SpinGlass Different consecutive bits and first and

last bits.
MiddleOneThirdSpinGlass Spin Glass over the middle 1/3rd bits.
MiddleTwoThirdSpinGlass Spin Glass over the middle 2/3rd bits.
FirstThirdSpinGlass Spin Glass over the left-most 1/3rd bits.
FirstTwoThirdSpinGlass Spin Glass over the left-most 2/3rd bits.

Each Boolean-logic problem is decomposed into subprob-
lems, displayed in Table 1. Each problem has two test cases
that determine the halting condition of a layer. The find
optimal trigger to move to the next layer is not activated
until the subproblem’s performance has reached optimality.
The second is fixed duration, which runs a fixed number
of mutations and evaluations (time-steps) in a layer before
proceeding to the next. Within a test case are several test
plans. A test plan is the decomposition used to solve the
overall complex problem the system is optimizing. In a layer,
the (1+1) EA continuously optimizes the bit-string on a test
plan’s subproblem until the test case’s halting condition is
satisfied.

The learning process is as follows: in the initial layer,
a randomly generated bit-string is passed into a layer. A
clone of the bit-string is then made and is mutated. The
mutation operator modifies the clone by traversing over each
bit, toggling a bit’s value at a 1/n probability. Using the
subproblem’s performance evaluation function, the clone’s
performance is compared to that of the parent. If the clone’s
subproblem score is greater than the parent’s, the clone re-
places the parent in the population. This process of cloning,
mutating, and evaluating repeats until the test case’s halting



condition is satisfied. Once a layer is halted, the bit-string
at the end of one layer is the initial bit-string for the next.

Test cases with one subproblem/layer act as the control for
these experiments as it monolithically learns the complex
Boolean-logic problem without decomposition. This con-
trol is important to our demonstration because monolithic
learning using this (1+1) EA does not experience forgetting
of a complex problem because the sole individual is only
replaced if a clone outperforms the parent. In other words,
performance is guaranteed to never decrease.

Finally, the fixed duration limits the number of time-steps
in a test plan to be 90% of the averaged required time-
steps to produce the optimal bit-string in the corresponding
monolithic find optimal test plan.

4. Experiment Results
All test plans for both Boolean-logic problems were eval-

uated for 100 trials to have a large enough sample to draw
significant conclusions. First we discuss our catastrophic
forgetting demonstration using OneMax.

4.1 OneMax
Both of the OneMax Experiment test cases contained five

test plans, defined in Table 2.

Table 2: OneMax Test Plans with Subproblem Sequence

Test Plan # Layer 1 Layer 2 Layer 3
Plan0 OneMax - -
Plan1 FirstHalfOneMax OneMax -
Plan2 SecondHalfOneMax OneMax -
Plan3 FirstHalfOneMax SecondHalfOneMax OneMax
Plan4 SecondHalfOneMax FirstHalfOneMax OneMax

Table 3 contains the averages and standard deviations over
the 100 trials of the total number of time-steps required to
maximize each layer’s subproblem performance for each of
the test plans. The monolithic plan (plan 0) required the least
amount of time-steps to transform the randomly generated
bit string into the all ones-string, requiring an average of
1,451.11 time-steps. Plans 1 and 2 required the next least
amount of time-steps, 2,066.4 and 2,166.45, respectively.
The plans with three layers of decomposition, plans 3 and
4, used the most time to generate the optimal bit strings for
all of their subproblems, requiring 2,928.55 and 2,937.43
average time-steps to iterate through all of their layers.

A multi-sample comparison using a left-tailed Z-tests
with the Bonferroni adjustment for multi-way comparisons
confirms that the monolithic test plan outperformed all of
the decomposition plans. From the Z-scores in Table 3 and
the adjusted α value of 0.01 (pre-adjustment α = .05), each
of the null hypotheses stating monolithic time-step averages
are greater than or equal to those of plans 1 through 4 were
rejected. The monolithic test plan’s average number of time-
steps to optimize the bit string over the OneMax problem is
significantly less than the decomposition-based test plans.

Because each decomposition was dissimilar and found
subproblem optimality at different rates, each test plan
transitioned to new layers at different time-steps: plan 1 at
754, plan 2 at 832, plan 3 at 821 and 1,584, and plan 4 at
769 and 1,631.

Because a (1+1) EA has a greedy selection mechanism,
the monolithic plan has no negative performance changes
throughout the learning process. More saliently, it reaches
optimality in all subproblem performances the fastest. Plans
1 and 2 reached OneMax optimality the second fastest,
but both test plans experienced a slight decrease in their
first layer’s subproblem performance after a transition to the
OneMax layer. The plans with three layers, plans 3 and 4,
experienced the largest first layer’s subproblem performance
decrease of all of the plans. In plan 3’s case, the average
FirstHalfOneMax performance was optimized, yielding a
perfect value of 1 at the end of layer 1. At the completion
of layer 2, the same subproblem’s average performance
plummeted to 0.56, before optimizing again to a subproblem
value of 1. Plan 4 had the same outcome, resulting in an
average SecondHalfOneMax performance decrease from 1
at the end of the first layer to .59 at the end of the second
layer.

Table 3: Average Time-Steps to Find Optimal OneMax Bit
String

Test Plan Time-Steps STDV Z-Score
Plan0 1,451.11 456.81 -
Plan1 2,066.4 460.35 -9.49
Plan2 2,166.45 536.29 -10.15
Plan3 2,928.55 574.57 -20.13
Plan4 2,937.43 582.16 -20.09

OneMax test case 2 continuously optimized the bit string
on a subproblem for a fixed 1,306 time-steps to iterate
through their layers. Each test plan’s layer was then given
the ceiling of the 1,306 divided by the number of layers in
that particular test plan.

Table 4 displays the average final OneMax performances,
their standard deviations, and Z-scores with the fixed dura-
tion halting condition. Contrasting from the first test case,
the primary measure is subproblem performance instead of
time-steps to find the optimal. Therefore, the closer the
performance value is to 1, the more preferable the outcome.

Table 4: Average Final OneMax Performances with Fixed
Layer Duration

Test Plan OneMax Perf. STDV Z-Score
Plan0 0.9937 0.0065 -
Plan1 0.9723 0.013 14.73
Plan2 0.9732 0.01354 13.57
Plan3 0.9397 0.01901 26.87
Plan4 0.9382 0.01634 31.51

From the OneMax performance averages, again the mono-
lithic test plan outperforms the others by producing a higher



0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

1.1 

0 300 600 900 1200 

Fi
rs

tH
al

fO
n

e
M

ax
 P

e
rf

o
rm

an
ce

 

Time-step 

Plan0 

Plan1 

Plan2 

Plan3 

Plan4 

(a) FirstHalfOneMax Performance

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

1.1 

0 300 600 900 1200 

Fi
rs

tH
al

fO
n

e
M

ax
 P

e
rf

o
rm

an
ce

 

Time-step 

Plan0 

Plan1 

Plan2 

Plan3 

Plan4 

(b) SecondHalfOneMax Performance

Fig. 1: OneMax Subproblem Performance with Fixed Layer Duration

performing bit string at the end of the 1,306 time-steps.
Bit strings developed by plans 1 and 2 were the next best
performing and test plans 3 and 4 were the worst average
performers. The Z-statistics tests confirm that the monolithic
test plan significantly outperformed the decomposition ap-
proaches. In the Z-test, the claim was that the monolithic
test plan’s average OneMax performance over the 100 trials
was greater than each of the decomposition-based test plans.

Following the first test case, performance of the first
layer’s subproblem decreases during the second layer in test
case 2. In test plans 3 and 4, the layer transition from layer
2 to 3 also resulted in a small second layer subproblem
performance decrease even though the first layer’s subprob-
lem increased. This observation is interesting because the
third layer’s subproblem depends on the first two layers’
subproblem for optimality and a decrease was not expected.
The explanation for the second layer’s subproblem decrease
is while the bit string is optimizing for the OneMax problem,
over 90% of the bits for the second layer’s subproblem are
already set to 1. At the same time, close to 50% of the bits in
the first layer’s subproblem are still 0. These two differences
in set bits means there was a higher probability that the
mutation operator would correctly toggle zero bits affected in
the first layer’s subproblem simply because there were more
zero bits. Combine these probabilities with the guarantee
that the (1+1) EA only accepts mutations that progress the
current layer’s subproblem performance, it is understandable
that the second subproblem’s performance could decrease
while the first subproblem’s performance rises during the
last layer.

Figures 1 (a) and (b) graph subproblem performances over
the 1,306 time-steps. These figures show that when layer 2
is activated in plans 3 and 4, their first learned subproblem’s
performance suddenly drops then increases when layer 3 is
activated.

These experiments demonstrate that in even very simple
RL problems where decisions are linearly separable from a

performance point of view, layered learning can experience
a stability-plasticity imbalance.

4.2 Spin Glass
The test plans in the Spin Glass experiments used the

subproblem sequences listed in Table 5.
In the first Spin Glass test case, the monolithic plan

0 required the least number of time-steps to generate the
optimal bit string when compared to the two decomposition
plans. Plan 0 required an average of 317,719.60 time-steps
to satisfy the halting condition of its only layer. Plan 1
required 34,320.81 more time-steps and plan 2 required
15,804.66 more time-steps than plan 0. The monolithic
plan’s average number of time-steps to generate the optimal
bit string was significantly lower than those required by the
two decomposition plans. Table 6 displays the average time-
steps, their standard deviations, and Z-scores comparing
plans 1 and 2’s average time-steps to the monolithic plan.

Table 5: Spin Glass Test Plans with Subproblem Sequence

Test Plan # Layer 1 Layer 2 Layer 3
Plan0 SpinGlass - -

Plan1
Middle

OneThird
SpinGlass

Middle
TwoThird
SpinGlass

SpinGlass

Plan2 FirstThird
SpinGlass

First
TwoThird
SpinGlass

SpinGlass

The second test case limited the number of time-steps to
285,947 derived from 90% of the first test case’s monolithic
average time-steps to generate the optimal string. From these
trials, the monolithic test plan produced a Spin Glass average
performance of 0.995 at the end of the limited layer duration.
From the decompositions that segmented the subproblems
in thirds, plan 1 averaged a Spin Glass performance of
0.821 and plan 2 averaged 0.989. The Z-tests comparing
the monolithic and decomposition-based test plans confirm



that the monolithic approach produced a significantly higher
average performance than plans 1 and 2. With a critical value
of 1.96, Table 7 displays the average Spin Glass performance
after all of the layer iterations have completed, their standard
deviations, and Z-scores.

Table 8 displays the average subproblem performances
for each test plan at the conclusion of each layer. One
noteworthy observation is that the first subproblem of each
decomposition-based test plan was optimized although the
number of bit string manipulations was limited to 90% of
the monolithic test plan’s result in the first test case; the plan
0’s final performance averaged very close to optimal, 0.995.

From Table 8, subproblem performance always decreased
in the decomposition-based test plans after a transition from
a subproblem’s layer to another layer. For instance, plan 1’s
transition from layer 1 to layer 2 resulted in the performance
of the MiddleOneThirdSpinGlass subproblem to decrease.
The subproblem decreases were not as large as those in the
OneMax experiment. The small decreases in performance
is attributed to the problem decompositions being lower-
ordered versions of the Spin Glass problem, where each
layer’s subproblem directly benefits from positive changes
gained from earlier layers.

Table 6: Average Time-steps to Find Optimal Spin Glass Bit
String

Test Plan Time-steps STDV Z-Score
Plan0 317,719.69 295,666.7228 -
Plan1 352,040.5 318,712.1596 -0.79
Plan2 333,524.35 323,185.469 -0.36

Table 7: Average Spin Glass Performance with Fixed Layer
Duration

Test Plan SpinGlass Perf. STDV Z-Score
Plan0 0.9952 0.0072 -
Plan1 0.8209 0.0078 163.71
Plan2 0.9891 0.0081 5.61

Table 8: Average Subproblem Performances per Layer’s
Completion

Plan # Subproblem Layer 1 Layer 2 Layer 3
Plan0 SpinGlass 0.9952 - -

Plan1
Middle

OneThird
SpinGlass

1 0.9843 0.9829

Plan1
Middle

TwoThird
SpinGlass

0.751 1 0.9933

Plan1 SpinGlass 0.6614 0.8209 0.9891

Plan2 FirstThird
SpinGlass 1 0.981 0.9824

Plan2 FirstTwoThird
SpinGlass 0.7498 0.9995 0.9936

Plan2 SpinGlass 0.6633 0.8202 0.9891

These experiments demonstrate that the stability-plasticity

imbalance created by layered learning application highly
non-linear problems may be nuanced and complex.

5. Conclusion
From these experiments, we have demonstrated that the

loss of beneficial knowledge can take place in a DBRL
system using a simple (1+1) EA on both linear and chal-
lenging non-linear problems. Because each test case for both
of the tested Boolean-logic experiments always resulted in
a decrease in the first optimized subproblem, we conclude
that this system favors plasticity, causing an imbalance.
Because of this imbalance, two main negative effects were
experienced. First, it took longer for the decomposition-
based learner to reach optimality compared to our control,
the monolithic learner. The reason for the required extended
learning duration is because the learner had to spend effort
in the final layer to regain beneficial knowledge that was
previously lost. The second negative effect was that overall
performance suffered. The decomposition-based approach
underperformed, averaging problem performances signifi-
cantly below the monolithic learner.

Both of the negative effects are attributed to the premature
removal of beneficial knowledge (in this case, bits), forgotten
to optimize on newer subproblems. The attribution was
uncovered by the realization that the first subproblem’s
performance decreased in the second layer for each test
cases with three layers. Therefore, we believe it is the
DBRL’s transitions to new subproblems that is the main
culprit for performance loss. In addition, the greedy behavior
of the (1+1) EA and the problem decomposition both have
played roles in driving out critical performance knowledge
prematurely.

The implications of DBRL systems not heeding to this
analysis’ warnings can lead to the severe performance degra-
dation experienced with neural networks from catastrophic
forgetting. We have demonstrated using two simple, non-
contrived problems that performance is affected with the
premature removal of beneficial knowledge; a more complex
system may suffer even more performance sub-optimality
if stability and plasticity are not balanced or mitigation
methods are not developed and deployed.

6. Acknowledgment
We thank the Florida Education Fund, the McKnight

Fellowship, and the Advanced Research Computing Center
(ARCC) in the Institute for Simulation and Training at the
University of Central Florida. Access to STOKES HPCC has
been instrumental to the research performed in this work.

References
[1] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,

1st ed. Cambridge, MA, USA: MIT Press, 1998.



[2] R. Parr and S. Russell, “Reinforcement learning with hierarchies of
machines,” in Advances in Neural Information Processing Systems 10.
MIT Press, 1998, pp. 1043–1049.

[3] T. G. Dietterich, “The maxq method for hierarchical reinforcement
learning,” in In Proceedings of the Fifteenth International Conference
on Machine Learning. Morgan Kaufmann, 1998, pp. 118–126.

[4] P. Stone and M. Veloso, “Layered learning,” in Machine Learning:
ECML 2000 (Proceedings of the Eleventh European Conference
on Machine Learning), R. L. de Mántaras and E. Plaza, Eds.
Barcelona,Catalonia,Spain: Springer Verlag, May/June 2000, pp. 369–
381.

[5] J. L. McClelland, B. L. McNaughton, and R. C. O’Reilly, “Why
there are complementary learning systems in the hippocampus and
neocortex: Insights from the successes and failures of connectionist
models of learning and memory,” 1994.

[6] Y. Jin and B. Sendhoff, “Alleviating catastrophic forgetting via multi-
objective learning,” in International Joint Conference on Neural
Networks. IEEE Press, 2006, pp. 6367–6374.

[7] F. M. Richardson and M. S. Thomas, “Critical periods and
catastrophic interference effects in the development of self-
organizing feature maps,” Developmental Science, vol. 11, no. 3, pp.
371–389, 2008. [Online]. Available: http://dx.doi.org/10.1111/j.1467-
7687.2008.00682.x

[8] M. McCloskey and N. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning probleml,” The psychology
of learning and motivation, vol. 24, pp. 109–165, 1989.

[9] S. Mondesire and R. P. Wiegand, “Evolving a non-playable character
team with layered learning,” in IEEE Symposium on Computational
Intelligence in Multicriteria Decision-Making (MDCM), 2011, pp. 52–
59.

[10] ——, “Forgetting classification and measurement for decomposition-
based reinforcement learning,” in Proceedings of The 15th Interna-
tional Conference on Artificial Intelligence (ICAI’13), 2013.

[11] A. Robins, “Catastrophic forgetting, rehearsal and pseudorehearsal,”
Connection Science, vol. 7, pp. 123–146, 1995.

[12] A. Robins and S. Mccallum, “Catastrophic forgetting and the pseu-
dorehearsal solution in hopfield type networks,” Connection Science,
vol. 10, pp. 121–135, 1998.

[13] M. Hattori, “Avoiding catastrophic forgetting by a dual-network
memory model using a chaotic neural network,” 2009.

[14] R. M. French, “Pseudo-recurrent connectionist networks: An approach
to the "sensitivity-stability" dilemma,” Connection Science, vol. 9, pp.
353–379, 1997.

[15] P. Stone and M. Veloso, “A layered approach to learning
client behaviors in the robocup soccer server,” Applied Artificial
Intelligence, vol. 12, pp. 165–188, 1998. [Online]. Available:
http://nn.cs.utexas.edu/pub-view.php?PubID=126580

[16] S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone, “Evolving keep-
away soccer players through task decomposition,” Machine Learning,
vol. 59, no. 1, pp. 5–30, May 2005.

[17] A. Cherubini, F. Giannone, and L. Iocchi, “Robocup 2007: Robot
soccer world cup xi,” U. Visser, F. Ribeiro, T. Ohashi, and F. Dellaert,
Eds. Berlin, Heidelberg: Springer-Verlag, 2008, ch. Layered Learning
for a Soccer Legged Robot Helped with a 3D Simulator, pp. 385–392.

[18] P. Fidelman and P. Stone, “Layered learning on a physical robot,”
2005.

[19] P. A. Borisovsky and A. V. Eremeev, “A study on performance of
the (1+1)-evolutionary algorithm,” in FOUNDATIONS OF GENETIC
ALGORITHMS, 7. Morgan Kaufmann, 2003, pp. 271–287.

[20] I. Wegener and C. Witt, “On the behavior of the (1+1) evolutionary
algorithm on quadratic pseudo-boolean functions,” 2000.

[21] M. Pelikan, M. Pelikan, D. E. Goldberg, and D. E. Goldberg,
“Hierarchical boa solves ising spin glasses and maxsat,” in In Proc.
of the Genetic and Evolutionary Computation Conference (GECCO
2003), number 2724 in LNCS. Springer, 2003, pp. 1271–1282.



Reproduced with permission of the copyright owner. Further reproduction prohibited without
permission.


