
Forgetting Classification and Measurement for Decomposition-based
Reinforcement Learning

Sean Mondesire1 and R. Paul Wiegand2

1College of Engineering and Computer Science, University of Central Florida,Orlando, FL, USA
2Institute for Simulation & Training, University of Central Florida,Orlando, FL, USA

Abstract— Forgetting is a memory phenomenon that affects
knowledge used to perform behaviors and tasks. In this work,
two metrics are presented to aid the diagnosis of forgetting
in decomposition-based reinforcement learning systems. With
these metrics, developers now have the ability to classify
types of forgetting, identify when important knowledge is lost,
located wasted computation effort, and verified if a task de-
composition is best suited for learning a given task. Through
monolithic and decomposition-based learning experiments,
the validity of these metrics is examined and recommendations
are made about when these metrics are most effective.

Keywords: Forgetting metrics, reinforcement learning.

1. Introduction
This paper presents two new metrics that classify and

measure certain types of forgetting challenges that can occur
in decomposition-based reinforcement learning. The proposed
metrics contribute to this learning domain by providing a
method of measuring the effects of learning a new subtask
on knowledge used to perform an older, previously learned
subtask when forgetting occurs. The proposed metrics sup-
plement traditional measurements since they relying solely on
task and subtask performance data. Furthermore, the metrics
weigh and aggregate the performances of all subtasks to make
it convenient to identify and measure the type of forgetting
that has taken place.

Once it occurs, it is important to classify and measure
forgetting to identify inefficiencies in the learning system and
the learning process it employs. Most importantly, because
forgotten knowledge can affect the ability to perform a task,
the proposed metrics determine if forgotten knowledge has
a positive, negative, or neutral effect on performance. Next,
the metrics can be used to identify subtask performance
dips or stagnation in the context of all of the subtasks.
Affected subtask performance can then be targeted for subtask
retraining with the goal of recovering lost knowledge and
proficiency. This simple analysis is made possible through
the easily produced quantifiable values the metrics generate.

The two presented metrics are purely performance-based
and can be applied to a wide variety of problems and
underlying metrics; however, unlike traditional performance
functions, these metrics use performance histories. This use
of subtask performance history provides additional details of
changes over time that occur at low-decomposition levels
that can easily be missed by more immediate performance

functions. Secondly, these proposed metrics aggregate all
of the subtasks of a task decomposition to determine the
significance of a change in knowledge prior to and post-
forgetting. These aggregations may differ from a performance
function used in a reinforcement learner’s evaluation phase
but the proposed metrics are used to primarily measure the
difference in performance of altered, forgotten knowledge.

For example, in the decomposition-based paradigm of lay-
ered learning [1], the learning system learns a complex task by
decomposing the task into multiple subtasks and sequentially
learns to perform each subtask one-by-one. If the complex
task is to play the game of soccer, a simple task decomposition
is to first learn to pass the ball, receive a pass, and then to play
a full game of soccer. The problem arises when the learner
transitions from one subtask to another. As the soccer-playing
system learns the third subtask of playing the full game of
soccer, the ability to perform the subtask of passing the ball
may be affected. In particular, the learner may forget some
of the knowledge required to pass the ball as effectively as it
did before it started to learn to play the full game.

In general, the two new metrics are intended to be de-
ployed when it is suspected that performance of a sequen-
tial decomposition-based reinforcement learning system is
affected by forgetting as the system iterates through a task
decomposition. The goal is that these metrics will be able
to identify periods in the learning process where forgetting
causes performance to stagnate or suffer and to quantify the
effect forgetting has on the system. With these tools, sys-
tem developers will be able to analyze task decompositions,
performance functions, and subtask transitions to identify
inefficiencies and optimize their learning system designs.

To validate the metrics, we construct artificial problems
that induce such forgetting challenges. These problems are
not reinforcement learning problems but they abstract key
aspects common to learning problems that are affected by
forgetting. From our experiments, we compare the results of
using the two forgetting metrics and make recommendations
about when they might be most effectively used.

2. Background
In natural science, knowledge is information used to make a

decision, perform a behavior, or have familiarity on a subject.
Similarly, in machine learning, knowledge is the basis of
all decisions. In this science, knowledge is represented by
stimulus-response pairs that determine the conditions certain
actions will be performed by the system.

Because acquired knowledge determines how well a behav-
ior is performed, knowledge can be classified based on value.
Beneficial knowledge leads a system towards optimal perfor-
mance of a behavior. Disadvantageous knowledge is stimulus-
response mapping that hinders behavior performance. Un-
helpful knowledge is information that can be removed from
the system with no positive or negative effect on performance.

According to Markovitch and Scott [2], the value of knowl-
edge has several factors, including relevance, correctness,
memory requirements, and influence on search time. Also, the
importance of knowledge is dependent on other knowledge in
the system. These five factors influence to which category an
item of knowledge belongs.

Forgetting is the loss or modification of knowledge from
a system’s memory that may affect the performance of a
behavior. Because memory is limited in machine learning,
forgetting is an important mechanism that reconciles the
storage of new information with old, acquired knowledge.

The act of forgetting can be caused by an explicitly invoked
mechanism or an implicit side-effect of learning. Explicit
forgetting mechanisms purposely drive out targeted acquired
knowledge. A deletion strategy is an example of an explicit
forgetting mechanism that removes knowledge from a system
to increase behavioral performance or to free memory for new
knowledge [3]. Markovitch and Scott’s [2] randomly deleting
knowledge items and Koychev’s [4] and Nakayama and
Yoshii’s [5] time-based forgetting are examples of deletion
strategies that have increased behavioral performance. Both
strategies explicitly select and remove knowledge from a
system’s policy (the collection of a system’s knowledge) with
the goal of increasing behavioral performance.

Implicit forgetting, or concept drift, occurs when knowl-
edge is lost as a consequence of learning [6]. Concept drift can
happen when knowledge becomes outdated, inadequate, or
loses performance due to a changing behavioral requirement.
For example, in recommender systems, drift occurs when a
user’s preferences change, affecting the system’s ability to
identify accurate recommendations with outdated knowledge.
A second implicit forgetting example is when a system’s old
knowledge or access to old knowledge is modified with the
acquisition of new knowledge. The same as explicit forgetting,
the unintended change to old knowledge can affect behavioral
performance observed prior to new knowledge acquisition.

Similar to the classification of knowledge, forgetting can
be classified as positive, negative, or neutral when based on
performance. Positive forgetting is the loss or modification
of knowledge that occurs when performance is increased
compared to performance prior to the forgetting. Negative
forgetting occurs when performance decreases when some-
thing is forgotten. Neutral forgetting is when knowledge is
lost or modified and no change in performance takes place.
This forgetting classification is directly related to knowledge
being beneficial, unhelpful, or disadvantageous. By these
definitions, if unhelpful knowledge is forgotten, then neutral
forgetting occurs; if beneficial knowledge is forgotten then
negative forgetting occurs; if negative knowledge is lost,

positive forgetting occurs.
Performance change is not always caused by the loss

of knowledge and performance is not always an accurate
classifier for forgetting. Randomness, dynamic environment,
and other external factors can affect the performance of a
task. Additionally, depending on the system, the task, and
its environment, beneficial and disadvantageous knowledge
may be removed from a policy and not be reflected in a
performance. With these points, classifying forgetting solely
based on performance is best suited for instances of when
factors, such as randomness and the environment, are con-
trollable, task conditions are repeatable, and policy change
has the greatest impact on performance.

The ability to classify and measure the magnitude of
forgetting based on performance is important to a learning
system because, under the right conditions, it can identify
when beneficial knowledge has been lost, locate wasted
computation effort, and verify if a learning approach is best
suited for a task. From the developer’s point-of-view, these
unfruitful periods of learning can be examined to understand
why learning did not improve and possibly be removed in
future learning events to save on learning computation effort.
Finally, with a quantifiable way to determine the magnitude of
forgetting, the amount of forgetting can be compared between
two approaches to determine which approach suffered or
benefited the most from knowledge lost or modification. With
these reasons to classify and measure forgetting, there are
motivations for a process that quantifies forgetting.

2.1 Reinforcement Learning Systems
Although there are many different types of reinforcement

learning (RL) approaches, this paper is concerned with direct
policy search [8] in evolutionary algorithms (EAs), genetic
algorithms (GAs), and primarily, decomposition-based rein-
forcement learning. EAs and GAs are RL algorithms that
are based on ideas of evolution, genetics, and survival of the
fittest. Here, the learner undergoes an evolution process, typi-
cally through the genetic operators of mutation and crossover,
to modify the learner’s representation. Through the cycle
of selection, reproduction, modification, and evaluation, the
system reinforces positive performance changes as the learner
learns a task. More detailed information on EAs and GAs
can be found in Holland’s [9] and DeJong’s [10] work on
evolutionary learning systems.

Several studies show that decomposition-based learning
can outperform monolithic learning approaches that learn to
perform complex tasks all at once, including Jackson and
Gibbon’s [11] and Hsu and Gustafson’s [12], [13] work.
Stone and Veloso’s [1] layered learning is an example of
a decomposition-based reinforcement learning approach, as
well as hierarchical reinforcement learning approaches feudal
reinforcement learning [14] and hierarchical abstract ma-
chines (HAMS) [15]. In these approaches, a hierarchy of
decomposition is used to guide the learning system to different
abstractions of the overall task.

These decomposition-based approaches are exposed to for-
getting valuable knowledge as the learner switches its subtask
focus. The subtask transition can cause knowledge used for
the new subtask to overwrite knowledge used for an older,
previously learned subtask. A metric is needed to identify
if this modification of knowledge is positive, negative, or
neutral to performing the overall, complex task. In addition,
the metric should be able to determine the magnitude of what
is forgotten to indicate the severity of what has been lost.

2.2 Related Performance Metrics
The simplest policy comparison measures are performance

ratio and difference, which directly compare a policy’s (P)
performance with the policy after some knowledge has been
forgotten (P’). Performance ratio (PR) is the quotient of
two performances. Performance difference (PD), f (x), is the
difference between the post-forgetting policy’s performance
g(P’) and the pre-forgetting policy performance g(P). If f (x)
is positive, positive forgetting has taken place; if f (x) is
negative, negative forgetting has occurred; if f (x) is zero,
neutral forgetting has happened because there was no change
in performance, although the policy has been modified. PD is
defined in Equation 1.

f(x) = g(P ′)− g(P) (1)

Similar to PD, Markovitch’s and Scott’s [2] economics of
learning measures the value of knowledge. In their approach,
the payoff of learning is measured, where payoff can be
positive, negative, or neutral and indicates the affect missing
knowledge has on a policy. Payoff is calculated by taking
the difference between two benefits, which are two separate
policies, solving the same task. A benefit for one policy is the
difference between the quality of the solution and the cost of
solving the problem.

In Gorski and Laird’s [16] work on transfer learning met-
rics, transfer ratio, transfer regret, calibrated transfer ratio
(CTR), and average relative reduction (ARR) are examined for
validity in comparing learning performances. These metrics,
based on overall task performance, determine if an experi-
mental policy, one that has learned a new behavior from an
old behavior, outperforms a controlled policy.

The simplest of the four performance-change metrics in
Gorski and Laird’s work and the most similar to PR is
transfer ratio. Transfer ratio, used by Morrison et al. [17]
for performance comparison, is the ratio of the area under
the experimental policy’s performance from time 0 to time t
over the area of the control’s learning curve in the same time
range. Unlike simple PR, transfer ratio considers the entire
learning curve of the two compared policies.

Although the metrics above do not form a comprehensive
list of all performance measures in transfer learning, they
represent common methods of comparing policy performance
change. An overlooked issue with such performance measure-
ments is that they do not capture an entire policy change
that occurs in decomposition-based approaches; instead, they

capture the difference of only a single performance criterion:
the overall task the policy tries to solve.

In decomposition-based approaches, a task is decomposed
into subtasks the policy must learn to perform to solve the
overall task. Although these single criterion measurements
are adequate for monolithic learning, the learning of a task
without decomposition, they lack the ability to analyze the
changes in subtask performance caused by a policy modifi-
cation in decomposition-based approaches. Tracking forgot-
ten subtask-specific knowledge is significant because it can
identify instances of when beneficial knowledge is lost and
when learning at the subtask level stagnates or declines. The
significance is heightened when subtask performance is a
necessary component to the overall task but the evaluation of
the task does not explicitly measure proficiency of subtasks.
In this case, a single criterion-based forgetting metric only
considers overall task performance changes and can overlook
the loss of beneficial knowledge or the acquisition of negative
knowledge used by important subtasks. Additionally, mea-
suring performance changes only at the task level makes it
difficult to determine the magnitude the lost knowledge has on
task performance. Again, if subtask proficiency is an integral
part of task performance, then measuring the impact of loss
can be inaccurate if the task evaluation does not explicitly
consider the importance of each subtask.

In this work, two metrics are introduced that classify which
type of forgetting occurs at any point of the learning process
and quantifies the magnitude of that diagnosed classification.
Furthermore, the proposed forgetting measurements can be
used by a range of existing monolithic- and decomposition-
based approaches to identify performance changes due to for-
getting. The main distinction of the metrics is their increased
level of fidelity because of their consideration of subtask
performance changes. Through experiments, we determine
the effectiveness of each method and make recommendation
under which conditions these proposed metrics are best suited
for measuring forgetting.

3. Forgetting Metrics for Decomposition-
based Learning

Both of the proposed forgetting metrics are based on the
performance changes a policy experiences while acquiring
new and forgetting old knowledge. The metrics compare
performance of each subtask with its corresponding best
performance to determine what effect the policy change has
on each component of the task being learned. Although these
metrics are not intended to be used to identify occurrences of
forgetting, they are to be used when forgetting is the cause of
policy and performance changes and are designed to classify
and measure the type of forgetting that has occurred.

The difference between these proposed metrics and the
others mentioned is that the proposed metrics explicitly factor
in changes to all subtask performances instead of only the
performance of the one, overall task. By considering subtask
performance changes, each metric serves as an indicator of

when a policy loses or gains performance for individual sub-
tasks. With that said, the proposed metrics are influenced by
Markovitchs and Scott’s measure of the value of knowledge
and the metrics examined by Gorski and Laird.

Before describing the proposed metrics, a few definitions
must be made that are common for each method: a policy, a
collection of knowledge from the knowledge set, is modified
at time-step t. At time-step t, the policy’s performance of each
subtask is retrieved from the function p(si, t), where si is a
subtask in the set of all subtasks S used to perform task T. In
addition, function p returns the performance measure of task T
at time-step t with the parameters of p(T, t). Function p returns
the real value ratio of performance to the optimum and is
bounded to inclusively range from 0 to 1, where 1 represents
optimal task or subtask performance and 0 represents the
converse.

For each subtask si, there is a corresponding weight wi.
Also, there exists a weight for the task, wt. Each weight is a
real value inclusively ranging from 0 to 1, where the sum of all
subtask and task weights is equal to 1. The weights determine
the importance each subtask has on task performance and is
defined by the developer.

3.1 Direct Forgetting Metric
The first forgetting measurement, direct forgetting metric

(DFM), calculates a direct difference between two policies
using the weighted sum of subtask performances and is
defined in Equation 2. For simplicity, we will use policies
at time-steps t and t-1 as the immediate policies that will be
directly compared. By calculating subtask PD from these two
time-steps, f (t) makes a direct comparison between a policy
and its immediate change in the next time-steps to determine
the significance of the knowledge that was lost or modified.

f(t) =

|S|∑
i=1

wi (p (si, t)− p(si, t− 1)) (2)

3.2 Maximized Forgetting Metric
The second proposed forgetting measure, maximized forget-

ting metric (MFM), is represented as g(t) and is the weighted
sum of the difference of p(si, t) and the best performance
of si from time 0 to t-1. MFM is defined in Equation 3.
This measure utilizes the max function that retrieves the best
performance of policy P on subtask si up to the time t. By
calculating this difference, the entire performance history of
each subtask is factored into the forgetting measure.

g(t) =

|S|∑
i=1

wi

(
p(si, t) − max

t′∈{0,...,t−1}
{p(si, t′)}

)
(3)

If f (t) or g(t) return a positive value, then positive forgetting
has occurred in at time t. If the returned value is 0, then
neutral forgetting has occurred. If f (t) or g(t) is less than 0,
then negative forgetting has taken place. The magnitude of
the occurred forgetting is represented by the returned value.
For instance, if the returned value is negative, the smaller

the value, the higher the negative forgetting magnitude is
and denotes how much performance has suffered because
of the lost or modified knowledge. Consequently, if the
returned value is positive, the larger the number, the stronger
performance has improved with the forgotten knowledge.

4. Experiment Setup
The proposed DFM and MFM metrics are compared to

the PD metric (defined earlier) to evaluate the effectiveness
of the proposed measures. Though our ultimate interest
is in constructing improved methods to solve multi-agent
decomposition-based reinforcement learning problems, such
problems make for difficult initial study. Because of this, we
construct simple Boolean-logic problems that have the prop-
erties we need to investigate our metrics. Our true problem
involves a non-linear combination of two well-known Boolean
problems: LeadingOnes (LO: the sum of the sequence of
continuous ones in the prefix of the string) and TrailingZeros
(TZ: the sum of the sequence of continuous zeros in the suffix
of the string). For fixed-length binary strings x ∈ {0,1}n,
LOTZ(x) = LO(x)*TZ(x). The optimum of LO is the all one
string; the optimum of TZ is the all zero string, and the
optimum of the LOTZ function is a string in which the first 16
bits are 1 and the last 16 are 0. In these studies, we focus on
bit strings of length 32. For comparison purposes, the result
of any evaluation is always divided by the largest possible
optimal value-for LOTZ, this is 256 (16 times 16).

In these experiments, each bit abstractly represents knowl-
edge that is stored in a policy, which is represented as the
bit string. Forgetting is simulated through the modification of
any bit in the string and may affect performance of the task
or subtask the policy is learning to solve. The bit string learns
by toggling bits and is evaluated based on the task or subtask
it is currently learning.

The Boolean-logic problem was chosen because it is a
simple problem that allows for easier study of the effects of
forgetting. Modifications to the policy is instantly recogniz-
able and measurable because the policy is represented by a
bit string. Secondly, LOTZ can be conveniently learned with
a monolithic or decomposition-based approach. Examining
the metrics on the two separate approaches directly allows a
conclusion to be made if the new metrics satisfy the goal of
measuring forgetting at the subtask and task levels. Lastly, it is
acknowledged that these Boolean-logic problems reside in the
optimization problem domain. These optimization problems
have been chosen because the performance measures used to
solve these problems are used in the exact same manner as
how they would be employed in an RL technique. In both
cases, performance information is available after evaluation
with no additional effort or data collection is needed when
translating the use of these metrics from optimization to
RL. The only difference is that these optimization problems
make it less complicated to examine the effectiveness of the
proposed metrics than traditional RL problems. Though the
problems are very basic, they make it convenient to induce

forgetting on the policy and provide a clear, straight-forward
way of validating the metrics.

The PD metric is used as the control because it is widely
used to compare performance differences of two policies, it
is simple to compute and only requires performance data in
its calculation, and its outputted value is easy to decipher
(positive, negative, and zero values correlate to increased,
decreased, and no change in performance). Although the other
metrics also measure performance change, they do not easily
translate to the forgetting classifications of positive, negative,
and neutral and forgetting magnitude as the PD metric does.

Each metric will be evaluated on its ability to recognize
the different types of forgetting as they evaluate two different
learning methods employed to solve LOTZ. Method 1 learns
LOTZ monolithically and method 2 learns the task with a
three-subtask decomposition. Both methods use a 1+1 EA to
optimize the bit string in solving the task. The 1+1 EA is
a evolutionary algorithm technique that has a single learner
representation (the parent) produce a single modified version
of itself (the child) through operators during the evolution
process. The child replaces the parent if it outperforms or
performs at least as well as the parent, depending on the
system design. Borisovsky and Eremeev [18] and Wegener
and Witt [19] provide performance studies on 1+1 EAs. In
the context of this work, the bit string is the parent and
a modified copy of the parent is the child. The mutation
operator modifies the child by flipping each of the bits with
independent probability 1/n. The child replaces the parent if
its performance is at least as well as the parent’s. Bit flipping
simulates forgetting when previously solved positions are lost
or modified.

Method 1 learns the LOTZ task monolithically by repeating
the child reproduction process until the optimal bit string is
generated. The method is designed to evaluate the metrics on
detecting non-negative forgetting. Method 1 guarantees only
neutral and positive forgetting will occur because of the use
of a 1+1 EA and its policy of only keeping a policy change
if a mutated string produces a no-worse solution than the
existing policy. The strict practice of only accepting equal or
better performing policies also assures non-negative forgetting
because only one performance criterion is used for policy
evaluation and no decomposition is used.

Method 2 will learn LOTZ through a sequential
decomposition-based approach, similar to Stone and Veloso’s
layered learning [1]. In method 2, the bit string will first
learn the subtask of leading ones (LO) across the entire
bit string, then learn trailing zeros (TZ) across the entire
string, and finally learn the overall task of LOTZ. For the LO
subtask, performance is calculated by counting the length of
the all ones prefix and dividing it by the length of the string,
32. Similarly, the TZ subtask will calculate performance by
counting the length of the all zero suffix and dividing it by
the length of the string, 32. Both quotients indicate how close
the bit string is at solving the subtask.

All forms of forgetting occur in method 2. Method 2’s
policy will experience positive forgetting as it learns LO from

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000

P
e

rf
o

rm
an

ce

Time-step

(a) LOTZ

0

0.01

0.02

0.03

0.04

0 500 1000
Time-step

(b) PD/DFM/MFM

Fig. 1
METHOD 1: AVERAGED LOTZ AND FORGETTING VALUES OVER TIME.

the initial randomly generated string. Method 2 will then
see the policy suffer from forced negative forgetting as the
subtask transitions from LO to TZ because the TZ subtask is
purposely designed to pressure the EA to unlearn everything
from the LO subtask to maximize TZ performance. Conse-
quently, as the performance of TZ increases, the performance
of LO will decrease, causing negative forgetting. In a similar
manner, the bit string can again negatively forget knowledge
learned from the TZ subtask when it starts to learn LOTZ,
but the negative forgetting will be at a lesser magnitude than
the transition from LO to TZ because not all of the zero bits
acquired for TZ will be converted into ones. Finally, whenever
the policy changes but performance remains the same, neutral
forgetting occurs.

The two experiment methods differ in weight assignment.
Because method 1 is monolithic without any subtasks for
LOTZ, the only weight value (wt) will be set to 1. Method
2 has 3 subtasks and applies a .75 weight to the aggregate
subtask of LOTZ because it is clearly the most important
component to learning the overall task. The LO and TZ
subtasks evenly split the remaining .25 weight, where each
have .125 weight for forgetting equations DFM and MFM.

5. Results
Experiment method 1 demonstrates that PD and the two

proposed forgetting metrics are equivalently well suited for
classifying and measuring forgetting for the monolithic learn-
ing method. Because there is no decomposition in the mono-
lithic method, the three forgetting metrics return the same
values for each measured time-step, displayed in Figure 1
(b). Also, because the performance of the sole LOTZ task is
never decreasing, the max function always returns the t -1’s
performance value (max returns t’s performance value when
t = 0), making all three metrics always return the same value.

The monolithic approach’s use of a never decreasing perfor-
mance value means only neutral and positive forgetting can be
tested with the experiment setup. This never decreasing trend
is displayed in Figure 1 (a), which plots the average LOTZ
performance of the 10 trials over time. To test for neutral
and positive forgetting, 10 independent trials of method 1

are performed and their average performance at each time-
step is collected. For neutral forgetting verification, time-
steps with unchanged performances for each trial and their
average are compared with the metrics’ returned values. With
an accuracy of 100% for each trial, the metrics correctly
return zero when performance does not improve. For positive
forgetting, time-steps with an increase in performance are
expected to result in positive forgetting values. Again, with
100% accuracy for each trial, the forgetting metrics correctly
return forgetting values that correlate to positive forgetting
when performance increased. For instance, at time-step 1,112,
performance stagnates at .9996 for 35 time-steps. On the 36th
time-step after reaching .9996, the bit string is modified to the
optimal string for a performance value of 1. From this mi-
nuscule performance increase, the metrics return a small but
correct .00039 positive forgetting value. From these results,
it is concluded that given this experiment configuration, the
proposed metrics are accurate in classifying and measuring
performance-based forgetting in monolithic learning.

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000 2500 3000

P
e

rf
o

rm
an

ce

Time-step

LO TZ LOTZ

Fig. 2
METHOD 2: AVERAGED SUBTASK PERFORMANCE OVER TIME.

To validate the proposed metrics in a decomposition-based
approach, method 2 collects and averages each subtask’s
performance per elapsed time-step for 10 independent trials.
Figure 2 displays each subtask’s average performance over all
observed time-steps of the 10 trials. Further, subtask perfor-
mance changes are noted and compared to their corresponding
forgetting metrics’ values. PD’s averages are graphed in
Figure 3 (a), DFM in Figure 3 (b), and MFM in Figure 4.

-0.1

-0.05

0

0.05

0.1

0 1500 3000

Fo
rg

e
tt

in
g

M
e

as
u

re
m

e
n

t

Time-step

(a) PD

-0.06

-0.03

0

0.03

0.06

0 1500 3000

Time-step

(b) DFM

Fig. 3
METHOD 2: AVERAGED FORGETTING VALUES OVER TIME.

-0.3

-0.2

-0.1

0

0.1

0 1500 3000

Fo
rg

e
tt

in
g

M
e

as
u

re
m

e
n

t

Time-step

Fig. 4
METHOD 2: AVERAGED MFM VALUES OVER TIME.

By evaluating the 10 independent trials, it is expectedly
observed that PD, DFM, and MFM can generate different
classifications and magnitudes at the same time-step. Because
PD only calculates the difference between two task perfor-
mances, DFM’s calculation is based on the weighted sum of
subtask performances between two performances, and MFM
uses the difference between each subtask performance at t
and their respective maximum observed subtask performance
through t-1, the forgetting calculations will differ at times.

For neutral forgetting validation, it is observed that for each
of the 10 runs, PD and DFM remained unchanged when no
change took place in performance. This neutral forgetting
always results in PD and DFM returning 0 when subtask
performance was not altered. Because MFM uses the entire
history of each of the subtasks, the metric returns 0, the
indicator of neutral forgetting, when the weighted aggregated
value of all of the subtask is even with the best observed
performance. In terms of the average of the 10 trials, MFM
only detects neutral forgetting for a few instances early in
the learning of LO and right before performance evaluation
is switched to TZ. This neutral instance is caused by the bit
string stagnating with the current best observed string while
waiting to flip the correct bits for higher performance.

The ability to measure positive and negative forgetting is
also validated through method 2. From the trials, PD always
awards a positive value when task performance increases
between two immediate time-steps and generates a negative
value when there is performance decrease between t and t-
1. Similarly, DFM always generates a positive value, which
denotes positive forgetting, when the weighted differences in
subtask performance is positive between t and t-1; negative
forgetting takes place when the differences are below 0.
DFM’s trend is followed by MFM with the difference of
comparing the best observed subtask performances with the
performances at time-step t. Because the aggregate subtask
of LOTZ is heavily weighted in these experiments, changes
in LOTZ dominate the other subtasks in DFM and MFM
calculations.

Finally, there are times where classification from the three
metrics all differ. Again, these differences are caused by
changes at the subtask level between PD and the proposed
metrics and whether or not subtask performance at t-1 in-

cludes a best observed performance. For example, in the
average of the 10 decomposition-based trials, at time-step
173, all three metrics returned different measurements. PD
indicated neutral forgetting occurred with a value of 0 because
LOTZ performance did not change between t and t-1. DFM
indicated positive forgetting occurred with a value of 0.0016
due to a positive increase in LO performance while the other
2 subtasks maintained their values. MFM indicated negative
forgetting because none of the subtask performances at t met
or exceeded the observed best subtask performances. Because
PD does not use the performance of each subtask, it misses
subtask changes which can be responsible for performance
degradation.

From methods 1’s monolithic approach and 2’s
decomposition-based approach, we can conclude that
all three metrics correctly classify forgetting at their
respective levels; their differences lie in their subtask fidelity.
PD is a simple metric that only considers direct changes
in task performance. Although the easiest to calculate and
requires the least amount of input, PD ignores changes at the
subtask level. Even though it is more complex than PD and
requires pre-defined subtask weights, DFM allows for direct
comparison between two learning time-steps and factors
in subtask changes. Finally, MFM compares each subtask
performance at one time to the best observed.

6. Conclusion
Two proposed performance metrics were examined for ac-

curacy and validity of forgetting classification and magnitude
measuring. The first metric, direct forgetting metric, uses
subtask performance and compares performance difference
between two policies to determine the type of forgetting that
has occurred. With the use of subtask performance weights
and comparing performance changes between two policies,
this metric is best used when a direct policy comparison
is desired that compares two decomposition-based policies.
The second metric, maximize forgetting metric, considers the
entire history of subtask performance to determine which
type of forgetting a policy has experienced. This metric is
optimized to measure forgetting based on the best observed
subtask performances.

As a control, both proposed metrics were compared to a
performance difference measure. For monolithic learning, all
three metrics are equivalent and prove accurate at classifying
the type of forgetting that has occurred. Under decomposition-
based learning, the performance difference measure does not
factor all of the knowledge that is lost through the learning
process. Instead, it ignores performance changes at the subtask
level and solely relies on task performance for its calculation.
This oversimplification can result in inaccuracies if subtasks
are heavily weighted. On the contrary, the proposed metrics
are shown to be robust enough to inform both a mono-
lithic and decomposition-based approaches, capture subtask
performance changes, and support direct and history-based
calculations.

Although the metrics were not designed to detect forget-
ting, they are intended to be used when it is known that
forgetting has occurred and is the cause of performance
change in decomposition-based reinforcement learning. The
metrics become valuable assets when the learning system
struggles to retain important information used for solving
older subtasks when new knowledge is obtained. With these
metrics, developers can pinpoint times of the learning process
where important knowledge is forgotten and determine its
impact on performance at the task and subtask level.

References
[1] P. Stone and M. Veloso, “Layered learning,” in Proceedings of the

Eleventh European Conference on Machine Learning. Springer Verlag,
1999, pp. 369–381.

[2] S. Markovitch and P. D. Scott, “The role of forgetting in learning,”
in In Proceedings of the Fifth International Conference on Machine
Learning. Morgan Kaufmann, 1988, pp. 459–465.

[3] B. Smyth and M. T. Keane, “Remembering to forget: A competence-
preserving case deletion policy for case-based reasoning systems.”
Morgan Kaufmann, 1995, pp. 377–382.

[4] I. Koychev, “Gradual forgetting for adaptation to concept drift,” in In
Proceedings of ECAI 2000 Workshop Current Issues in Spatio-Temporal
Reasoning, 2000, pp. 101–106.

[5] H. Nakayama and K. Yoshii, “Effectiveness of active forgetting in
machine learning applied to financial problems,” pp. 24–29, March
2002.

[6] G. Widmer and M. Kubat, “Learning in the presence of concept drift
and hidden contexts,” Mach. Learn., vol. 23, no. 1, pp. 69–101, Apr.
1996. [Online]. Available: http://dx.doi.org/10.1023/A:1018046501280

[7] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: a survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, 1996.

[8] V. Heidrich-Meisner and C. Igel, “Evolution strategies for direct policy
search,” in Proceedings of the 10th international conference on Parallel
Problem Solving from Nature: PPSN X. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 428–437.

[9] J. H. Holland, Adaptation in Natural and Artificial Systems. The
University of Michigan Press, 1975.

[10] K. A. D. Jong, Evolutionary computation - a unified approach. MIT
Press, 2006.

[11] D. Jackson and A. Gibbons, “Layered learning in boolean gp problems,”
pp. 148–159, 2007.

[12] W. H. Hsu and S. M. Gustafson, “Genetic programming for layered
learning of multi-agent tasks,” in 2001 Genetic and Evolutionary
Computation Conference Late Breaking Papers, E. D. Goodman, Ed.,
San Francisco, California, USA, 9-11 July 2001, pp. 176–182.

[13] ——, “Genetic programming and multi-agent layered learning by rein-
forcements,” in In Genetic and Evolutionary Computation Conference.
Morgan Kaufmann, 2002, pp. 764–771.

[14] P. Dayan and G. E. Hinton, “Feudal reinforcement learning,” in
Advances in Neural Information Processing Systems 5. Morgan
Kaufmann, 1993, pp. 271–278.

[15] R. Parr and S. Russell, “Reinforcement learning with hierarchies of
machines,” in Advances in Neural Information Processing Systems 10.
MIT Press, 1998, pp. 1043–1049.

[16] N. A. Gorski and J. E. Laird, “Evaluating evaluations: A comparative
study of metrics for comparing learning performances,” Computer Sci-
ence Department, Rutgers University, Center for Cognitive Architecture,
University of Michigan, 2260 Hayward Ave, Ann Arbor, Michigan
48109-2121, Tech. Rep., 2009.

[17] C. T. Morrison, Y. han Chang, P. R. Cohen, and J. Moody, “Experimen-
tal state splitting for transfer learning,” in Proceedings of the ICML-06
Workshop on Structural Knowledge Transfer for Machine Learning,
2006.

[18] P. A. Borisovsky and A. V. Eremeev, “A study on performance of
the (1+1)-evolutionary algorithm,” in FOUNDATIONS OF GENETIC
ALGORITHMS, 7. Morgan Kaufmann, 2003, pp. 271–287.

[19] I. Wegener and C. Witt, “On the behavior of the (1+1) evolutionary
algorithm on quadratic pseudo-boolean functions,” 2000.

