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Abstract— Layered Learning is an iterative machine learning 
technique used to train agents how to perform tasks. The 
technique decomposes a task into simpler components and trains 
the agent to learn how to perform progressively more complex 
sub-tasks to solve the overall task. Layered Learning has been 
successfully used to instruct computer programs to solve 
Boolean-logic problems, teach robots how to walk, and train 
RoboCup soccer playing agents.  

The proposed work answers the question of how well does 
Layered Learning apply to the evolved development of a 
heterogeneous team of Non-playable Characters (NPCs) in a 
video game. The work compares the use of Layered Learning 
against evolving NPCs with monolithic based approaches. 
Experiment data show that Layered Learning can result in the 
successful development of NPCs and demonstrates that the 
approach performs well against monolithic evaluation. 

Keywords: Layered Learning, Genetic Algorithm, Decision 
Making 

I.  INTRODUCTION 
Layered Learning is an iterative machine learning technique 

that has been used to automate the process of training 
computer-based agents to perform tasks. The model 
decomposes complex tasks into simpler sub-tasks and trains the 
agent on one sub-task at a time. The aim with Layered 
Learning is that once the agent has learned to perform all of the 
sub-tasks, then the agent will be able to perform the overall 
assigned task. The approach attempts to lessen the arduous goal 
of learning how to perform a complex task at once by learning 
how to perform a series of increasingly difficult component 
tasks, where none is more complicated than the original task. 
The decomposition from a single task to a set of multiple 
criteria allows the agent to distribute the workload of learning 
across several phases instead of being overwhelmed all at once. 

Layered Learning is being used to develop the decision 
making abilities of both simulated and physical agents. 
Examples of uses of Layered Learning include using the 
method to teach a computer-based agent to solve Boolean-logic 
problems [1], to train a robot how to walk [2], and teach 
simulated robots how to play variations of soccer [3] [4].   

The work presented here seeks to determine how 
effectively Layered Learning can be applied to the 

development of an evolved heterogeneous team of Non-
playable Characters (NPCs) in video games. To make this 
determination, the work uses Layered Learning with a Genetic 
Algorithm (GA) to modify the behaviors of a team of NPCs in 
a predator-prey scenario. The approach evolves each 
teammate’s behaviors with the goal of giving them the ability 
to solve a task shared among the entire team. The proposed 
method decomposes the task into 3 sub-task layers: learn how 
to perform the basic task 1) effectively, 2) efficiently, and 
finally 3) effectively and efficiently at the same time.  

For performance evaluation, Layered Learning is compared 
with several GAs using monolithic fitness criteria variations. 
This evaluation is sought because existing work that compares 
the performance of Layered Learning and monolithic GAs 
leaves questions of when and how Layered Learning should be 
used to develop teams of agents.  

The results for this paper suggest that Layered Learning is 
successful in the production of a heterogeneous multi-agent 
team for a specific class of predator-prey problems, and the 
approach may be effective in more complex domains such as 
the heavily tested RoboCup and other robotic domains. In 
addition, favorable results mean the approach can be used as an 
additional method of developing the decision making ability for 
an evolved team of agents assigned shared complex tasks.  

II. LAYERED LEARNING 
Layered Learning has been used to develop the decision 

making ability of autonomous robotic and other computer-
controlled agents. Proposed by Stone and Veloso, Layered 
Learning extends the robot shaping [5] idea of decomposing a 
task into simpler components by training the learning agent on 
progressively more complex sub-tasks one at a time [3]. The 
bottom-up approach sees the agent first learn how to perform 
the less difficult sub-tasks before progressing to the more 
complex sub-tasks. Because an agent learns one sub-task at a 
time, each sub-task is seen as a layer of training the agent 
experiences before learning to perform the overall task.  

 Each layer is comprised of at least one training scenario 
that is designed to train the agent to perform the layer's sub-
task independent of other sub-tasks. Within each layer, the 
agent learns and adapts its decision making knowledge to 
perform the assigned sub-task. The agent remains in the layer 
until the layer's halting criteria is satisfied. The halting criterion 
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is a specified level of proficiency in performing the sub-task, a 
limit on time training in a layer, or any other condition that 
signals the learning model when to progress to the next layer. 

The knowledge acquired in each layer is progressive 
because the agent's knowledge-state at the end of one layer is 
fed into the next layer. This forwarding of knowledge allows 
each layer to build on top of what was previously learned by 
adding new knowledge during the training of the next sub-task.  

Within layers, Layered Learning relies on another machine 
learning technique to be employed to develop agent behaviors. 
Neural Networks [6] and genetic programming (GP) [7] have 
been used to manipulate copies of the agent and evaluate how 
well the agent performs the current layer's sub-task. The 
modification-evaluation process within a layer repeats until the 
layer's halting criterion is satisfied before moving to the next 
layer.  

Because the process of Layered Learning is based on 
successive layers, the aim of the layered approach is to have the 
agent be able to perform the assigned task once all of the sub-
tasks have been learned. With that said, Layered Learning is 
best used when a task is too complex to be learned in one phase 
and when the task can be decomposed into simpler sub-tasks.   

Layered Learning is a natural choice for the development of 
decision making abilities of autonomous agents because of its 
break down of a complex task into simpler components. With 
autonomous agent design, such as the development of NPCs, 
Layered Learning provides an intrinsic, abstract scheme for 
agent training.  Any agent developer can employ this natural 
learning model to give shape to an agent by teaching one 
behavior at a time or how to perform basic actions before 
moving to more complex ones.  

The work proposed here uses Layered Learning to evolve a 
team of NPCs. Layered Learning is chosen because it has 
shown to reduce the solution space at each layer, lessen the 
pressure of discovering the solution to a complex task all at 
once, and provide a natural and simple way of decomposing an 
arduous task into manageable portions [8] [6].  

III. RELATED WORK 
The motivation behind Layered Learning is to provide an 

effective model of decision making for computer-based agents. 
Since the model’s introduction, several noteworthy works have 
expanded the learning technique and explored new areas where 
Layered Learning can be successfully deployed.  

Stone and Veloso first used Layered Learning to train 
simulated robots to play soccer [3].  The work produced an 
agent team that adhered to the rules of soccer prescribed by the 
RoboCup Challenge.  Their model splits learning into two 
phases. The first phase trains the agent to perform basic, 
individualistic actions, such as movement. The second phase 
trains the agent to perform more complex tasks, including 
team-involvement behaviors, such as passing. Their work 
provided the introduction of the Layered Learning model and 
shows how the decomposition of a complex task could train 
agents how to progressively learn sub-tasks.  

Layered Learning has also been applied to the RoboCup 
sub-domain of Keep-away. In Keep-away, instead of trying to 
score goals, players with the role of keepers try to maintain ball 
possession by passing the ball among teammates. Takers are 
tasked with stealing ball possession from the keepers.  

Gustafson and Hsu use Layered Learning to train a team of 
keepers [7]. Their method uses GP to produce a controller that 
determines which actions the keepers will perform. The results 
from their experiments show that Layered Learning can 
produce Keep-away teams that outperform keeper 
implementations based on a standard GP technique with an 
aggregated fitness function and a hand-coded approach.  

Whiteson, Kohl, Miikkulainen and Stone [6] also tackled 
the development of keepers. Their work compares Layered 
Learning’s performance against Tabula Rasa with Incremental 
Reuse and co-evolution. Here, Neural Networks control keeper 
decisions and are evolved in each layer. The coevolutionary 
approach does not decompose the task but instead trains the 
keepers on the entire task at once. These coevolved agents are 
homogeneous because each agent shares the same decision 
making knowledge. Experiments show that the coevolutionary 
approach produces the best team of keepers, opposite of 
Gustafson and Hsu’s findings that Layered Learning produces 
a better keeper than an aggregate function. It should be noted 
that both works differ in the machine learning technique used 
within layers, aggregation function, and implementation.  

Jackson and Gibbons [1] examined Layered Learning with 
GP to solve Boolean-logic problems. Similar to Gustafson and 
Hsu, their work evolved a genetic program that makes the 
Boolean-logic decisions to solve the problems at each layer. 
Their work also compared Layered Learning with GP against 
an approach with standard GP (an aggregate/monolithic fitness 
function), and an Automatically Defined Function GP based 
system. Results show that Layered Learning solved the 
Boolean-logic problems with less computational effort than the 
standard GP and ADF approach. 

 The work presented in this paper uses Layered Learning to 
tackle high-level tasks in a multi-agent environment. This work 
analyzes the effectiveness of using Layered Learning to evolve 
a team of heterogeneous agents against monolithic GAs. 

IV. METHOD 
The proposed work provides a method of producing a team 

of agents to perform a shared task. To achieve this goal, 
Layered Learning is used to decompose a complex task into 
simpler components and trains agents to perform each sub-task. 

 There are a number of qualities that distinguish this work 
from others. First, the evolved agents are heterogeneous 
because each team member has its own set of knowledge 
evolved to learn the shared task. The heterogeneity creates 
diversity within the team and the potential for team roles to 
emerge. Second, the team of NPCs is evolved as one unit to 
produce the best composition of roles and distinct decision 
making to achieve the shared goal. Third, the proposed method 
designs the layers in a way where the complex task is 
decomposed into sub-tasks that aim at improving task 
performance at each layer. The final layer unifies all of the sub-
tasks with an aggregate function that ultimately determines the 



quality of performance. Finally, this method allows the same 
training scenario to be used for each layer and sub-tasks. 
Typically, agents in Layered Learning train on different 
scenarios for each layer to allow the agent to fully focus on the 
sub-task at hand. The proposed method uses the same scenario 
but with different fitness criteria for each layer. This scenario 
reuse allows the agent developer to have more time on other 
development tasks.  

A predator-prey scenario is used to evaluate the 
effectiveness of the proposed method. In the scenario, a team of 
agents is assigned the shared complex task of capturing its prey 
as effectively and efficiently as possible. To implement the 
scenario, a Pac-Man-inspired game, Pac-Clone, is used to 
provide the game environment, agent constraints and roles, and 
rules the agents follow for task achievement. In the 
implementation, the ghosts in Pac-Man represent the NPC team 
that is being learned. The shared complex task the team is 
given is to capture Pac-Man with a high probability of success 
and in as few time-steps as possible.  

To train the team of NPCs, the ghosts’ task is decomposed 
into three layers: 1) capture Pac-Man, 2) minimize the game’s 
duration, and 3) an aggregate function that rewards fast Pac-
Man captures. The capture Pac-Man sub-task favors ghost 
teams that are able to locate and capture the target 
(effectiveness). The capture sub-task does not discriminate how 
ghosts capture their prey but rewards their performance only if 
the team is able to accomplish the sub-task.  

The second layer seeks to minimize game duration 
(efficiency). There are two ways a game can terminate before it 
has reached the time-limit: 1) a ghost has captured Pac-Man 
and 2) Pac-Man has achieved his own task. The first cause 
means the ghosts solved the sub-task from the first layer; the 
second means the ghosts were unsuccessful at capturing Pac-
Man. Regardless of the cause of a game ending prematurely, in 
this sub-task, the team is only tasked with ending the game as 
early as possible. 

The final layer aggregates both sub-tasks by rewarding 
teams that can capture Pac-Man the most often and the fastest 
(effectiveness + efficiency). The aggregation creates the need 
for the team to be able to perform the first two sub-tasks 
together and removes any reward for Pac-Man eluding capture 
as seen in the second layer. With the complex task decomposed 
into these 3 layers, the team of NPCs is evolved in progressive 
steps which lead to the overall task to be addressed.  

The following subsections discuss the implementation of 
the proposed use of Layered Learning. Here, the agent 
environment and the evolutionary training process are 
described in detail. 

A. Pac-Clone 
Pac-Clone is a 2D video game that is inspired by Pac-Man 

[9]. It was developed to evaluate different machine learning 
techniques’ abilities to produce agent decision making 
capabilities. The Pac-Man concept is useful because it is an 
established predator-prey problem that encourages team actions 
to accomplish a shared task. In addition, Pac-Man provides an 
interesting dynamic where the roles of predator and prey are 
flipped at certain points in the game. Dynamic role reversal 

makes the problem challenging for the agents to learn both 
predator and prey-like decisions.  

In short, the Pac-Clone game consists of two opposing 
sides: the playable character Pac-Man and three NPC ghosts. 
Pac-Man is tasked with collecting all of the dots, power-pills, 
and fruit scattered through the game environment by moving to 
their locations. In Pac-Man, the ghost team is tasked with 
preventing Pac-Man from achieving his task by capturing him. 
Captures are achieved by a ghost sharing the same location in 
the environment as Pac-Man at the same time.  

In Pac-Clone, when Pac-Man consumes a power-pill, he is 
able to capture ghosts for 15 time-steps. Power-pill 
consumption reverses the roles in the game by making Pac-
Man the predator and the ghosts the prey. Once a ghost is 
captured, it is eliminated from the game environment. If 
another power-pill was not consumed within this 15 time-step 
duration, Pac-Man is vulnerable to capture by a ghost again at 
the end of the interval. Ghosts cannot consume any items in the 
environment but can block Pac-Man from obtaining an item by 
standing at the item’s location or capturing Pac-Man.  

Pac-Clone follows all of the rules of the classic Pac-Man 
game, as outlined in [10], with a few variations. Differences 
include level design, character movement, scoring, and game 
termination. For game termination, Pac-Man is given one life 
and the game has a maximum time limit. If Pac-Man is 
captured, collects all of the dots, power-pills, and fruit, or the 
time-limit expires, then the game ends. Each agent is restricted 
in movement by being permitted to move to at most one space 
per time-step and only in up, down, left, and right directions. 
Both Pac-Man and ghost characters use the A* route planning 
algorithm to generate routes more than two spaces away. 
Agents are not permitted to move to spaces where walls are 
located and two ghosts cannot occupy the same map location.  

To make the game more challenging, each character has a 
limited view of the environment, meaning they can only detect 
items and agents from sensors and perceptions. All agents have 
access to the immediate squares one space around them from 
its sensor. Each character also has a heading that change in the 
up, down, left, and right directions. Heading is used to give the 
characters perceptions of the environment based on line-of-
sight (LOS). LOS is interrupted if another agent or wall crosses 
its heading path.  

 Pac-Clone uses scripting to drive the actions of the 
characters. Each character has its own script that determines 
what actions to perform based on inputs from the environment 
and character’s state. At every time-step in the game, each non-
captured character is polled for an action to perform. It is up to 
the character’s script to reply with an action; otherwise, the 
character will not perform a new action for that time-step. 
Some actions require more than one time-step to perform to 
completion, for example, moving to a location two or more 
spaces away. Actions like these produce a sequence of actions 
the agent will perform in subsequent time-steps unless 
interrupted with a new action or an invalid action from the 
game’s engine.  Each script is broken down into actions, 
conditionals, and IF-statements. Table 1 lists all actions and 
conditionals used in Pac-Clone. Actions are the individual 
behaviors a ghost can execute. The “clear route to follow” 



action stops the agent from continuing on a route it is currently 
following. “Attack” sends the ghost along a route to Pac-Man’s 
last known location. This action only executes if Pac-Man’s 
location is known by the ghost through communication, 
perception, or sensor detection. “Evade” sends the ghost in the 
opposite direction of Pac-Man. “Keep the same heading” 
maintains the ghost’s current heading. “Move randomly” 
moves the ghost to a random 4-directional one space location. 
“Move to staring location” sends the ghost back to its starting 
location on the map. “Noop” explicitly tells the game engine 
that there is no other action to perform for the current time-
step. “Set heading on movement” changes the ghost’s heading 
to follow the direction it is moving to. The “set heading” 
actions sets the ghost’s heading to be up, down, left, or right. 
“Transmit Pac-Man’s location” sends a message with Pac-
Man’s last detected location to all of its teammates. This action 
represents agent communication and the sharing of knowledge.  

TABLE 1. SCRIPT ACTIONS AND CONDITIONALS IN PAC-CLONE 
Actions Conditionals

Clear Route to Follow Am I Already Moving to the 
Planned Destination 

Attack Have I Generated a Route

Evade Is Movement List Empty

Keep the Same Heading Is Pac-Man Vulnerable

Move Randomly Is Pac-Man Detected 

Set Heading Is Pac-Man Detected by 
Communication 

Set Random Heading Is Pac-Man Detected by 
Perception 

Set Heading on Movement Is Pac-Man Detected by Sensor 

Transmit Pac-Man’s Location Is Pac-Man within n Spaces

Move to Starting Location 
 

Noop 

Multiple actions can be given to the game engine at once 
but priority goes to the order the actions are received if there 
are conflicting actions, e.g. multiple heading changes, 
movement requests, and the presence of a noop with any other 
action. Although basic, this set of actions gives the ghosts the 
foundation of what is needed to capture their prey. 

IF-statements evaluate conditionals that lead to nested IF-
statements or actions to be executed based on the conditional’s 
outcome. Conditionals evaluate a specific aspect of a ghost’s or 
environment’s state. The “Am I already moving to the planned 
destination” conditional is true if the ghost is currently 
following a route to a specified location. “Have I generated a 
route” is true if the ghost has produced a route to follow and is 
travelling along it. “Is movement list empty” is true if the ghost 
has movement actions to follow. “Is Pac-Man detected” is true 
if Pac-Man is currently detected by communication 
transmitted, by self-perception, or by the ghost’s sensor. The 
communication detection conditional is based on the action to 
transmit Pac-Man’s location. Pac-Man is detected by 
perception if the ghost’s heading is pointing at Pac-Man and 

there is LOS. Pac-Man detection from a sensor is activated if 
Pac-Man is within one space of the ghost. “Is Pac-Man 
vulnerable” is true if Pac-Man has not consumed a power-pill 
within 15 time-steps. If this conditional is true, the ghost can 
capture Pac-Man if they share the same environment location. 
The range conditionals return true if Pac-Man lies within the 
appropriate range. For instance, the condition “is Pac-Man 
within 3 spaces” is true if Pac-Man’s location is 3 or less 
spaces from the ghost.  

IF-statements can have nested conditionals with the use of 
AND, OR, and NOT operators. The IF-statements determine 
which actions to execute and when. Fig. 1 is an example of a 
ghost script with 2 top-level IF-statements. Together, the 2 IF-
statements guide the agent towards or away from Pac-Man, 
depending Pac-Man detection and vulnerability state. 

This implementation of Layered Learning method outputs 
scripts for each NPC ghost to eliminate Pac-Man in Pac-Clone. 
Because scripts are used to drive the decision making of each 
game character, and the fact that the game provides a defined 
agent environment, set of constraints, and task, Pac-Clone is an 
excellent test bed for analyzing how the proposed method 
performs at solving a shared complex task for a team of agents. 
IF(isPacManDetected AND isPacManVulnerable, 
attack,moveRandomly) 

IF(isPacManDetected AND NOT(isPacManVulnerable) 
AND isPacManWithIn3Spaces, evade, 
MoveToStartingLocation) 

Figure 1. Pac-Clone ghost script example 

B. Layered Learning with a Genetic Algorithm 
The goal of the implementation is to produce a team of 

three ghosts that is able to capture Pac-Man the fastest. To 
accomplish this goal, the implementation evolves three scripts 
together that represent the decision making knowledge of the 
teammates of a ghost team. To start the evolution process, a 
collection of teams are created. Each team in the collection is 
generated initially with a script of random conditions and 
actions. At each layer, the collection of teams makes up the 
population that is inputted into a GA and each team is denoted 
as a chromosome. The GA feeds each team’s set of scripts into 
Pac-Clone to play a series of games against a hard-coded, static 
script Pac-Man, evaluates how well each team performs  the 
current sub-task, modifies the scripts, and repeats until the 
halting condition has been reached. Here, the halting condition 
is 50 generations. In each generation, every team will play 10 
games, be evaluated on a sub-task’s fitness function, and 
experience modification through a genetic operator or elitism.  

The population of teams at the end of the GA phase is 
passed onto the next layer. The next layer repeats the GA 
process but with a different sub-task and a different fitness 
evaluation criterion. Once the final layer is complete, the team 
that produces the best aggregate results in the last batch of 
games is the output of the proposed method. The descriptions 
below further explain each GA component in detail.  

C. Chromosomes  
Each chromosome in the GA is made up of three alleles that 

represent the scripts that drive the decisions of the three ghosts 
in the game. During the creation of the population, each script 



initially contains at most 20 randomly generated, top-level IF-
statements; the script is allowed to grow and shrink in IF-
statement size over the entire learning phase. Each top-level IF-
statement has no more than 4 degrees of nested IF-statements, 
meaning the maximum number of IF-statement levels that can 
exist in the script is 5 nested IFs deep. The number of nested 
IF-statements decreases by one at each degree level below the 
top. Each IF-statement is also restricted to have at most 5 
conditionals and 5 actions that correspond to true and false 
paths. The number of nested IF-statements, conditionals, and 
actions are randomly generated during each IF-statement’s 
creation. Size limitations are in place because individual scripts 
can become long, redundant, and unreadable for analysis.   

D. Pac-Man 
 Pac-Man’s static script aims at collecting all of the dots, 

power-pills, and fruit through the current level. If Pac-Man 
detects a ghost while vulnerable, he will evade the ghost. If 
Pac-Man is invulnerable and detects a ghost, he will pursue and 
attack the ghost until the ghost is captured or Pac-Man becomes 
vulnerable. To make Pac-Man efficient, every dot, power-pill, 
and fruit location is stored in a memory bank until Pac-Man 
reaches that location. At times when Pac-Man does not 
perceive or sense one of these items, he checks his memory 
bank for an item to pursue. If Pac-Man is not evading, 
attacking, or in pursuit of an item, he is moving randomly, with 
the hope of detecting an undiscovered item. Although Pac-
Man’s script is static and susceptible to exploitation, it provides 
a formidable training foe and standardizes team evaluation. 

E. Fitness Function 
 During each layer, one of the three discussed fitness 

functions is used to rank the teams. In the first layer, teams that 
produce the highest probability of capturing Pac-Man in a 
generation receive the highest fitness. The second layer 
rewards teams that lead to shorter game durations. Finally, the 
third layer gives preference to teams that excel in the aggregate 
evaluation of capturing Pac-Man with a high success rate and 
with time efficiency. Below is the equation for calculating the 
aggregate fitness function. Capture and game duration weights 
were used to give more importance to Pac-Man captures and to 
reduce occurrences of short game durations from ghosts 
allowing Pac-Man to achieve his task. f(x) in (1) is the function 
used to calculate the aggregate fitness for a chromosome team 
after it has played a set of games, x. WCapture and WGameDuration 
are the fixed weights that scale the capture and game duration 
values; they are set at 80 and 20, respectively. n is the total 
number of games played by a team in a generation. 
Maximum_Game_Length is the constant limit of how long a 
game can be played, and is fixed at 500 time-steps. ci is the 
capture result in the ith game of the sample of games passed in 
by x. di is the game duration in time-steps of the ith game in the 
set of games x. 

(1) 

F. Elitism 
 Upon the completion of a generation, the best fit 10% of the 
population is copied directly into the succeeding generation’s 
population. This form of elitism guarantees that the best fit 
chromosomes are not lost after applying the genetic operators 
to make up the rest of the next generation’s population.  

G. Selection and the Genetic Operators 
 Tournament selection for reproduction in the GA works as 

follows: 10% of the population is randomly selected and the 
best fit chromosome is chosen to be a parent for crossover. The 
process is performed again to select a second parent. To 
perform crossover, a random location on a ghost’s script is 
selected from the two parents. All of the actions and IF-
statements from the beginning to the random crossover point of 
the script in the first parent are copied to the first offspring. All 
of the actions and IF-statements from the random point to the 
end of the script on the second parent are appended to the first 
offspring’s script. The process is repeated for the second 
offspring, but this time starting by copying the beginning 
sequence from the second parent followed by the ending 
sequence from the first parent. Using these methods of 
selection and crossover permits only better fit chromosomes to 
pass their information to future generations and emphasize the 
idea of survival of the fittest.  

Mutation occurs by going through every top-level IF-
statement in an offspring’s script and randomly generating a 
number. If the random number is less than 10% (the mutation 
rate) then that IF-statement is replaced with another random IF-
statement. Also, every non-elite chromosome has a 1% chance 
that it will be replaced with a new, randomly generated set of 
scripts. Mutation and a chance of new chromosome production 
adds variability to the population and assists in fighting the 
localization problem, where chromosomes start fixating on a 
single solution and never explore other possibilities.  

H. Genetic Algorithm Parameters 
The normally distributed population of the GA is fixed at 

50 chromosomes and evolved for 50 generations for each 
fitness function. At every generation, each chromosome plays 
10 games, 5 games in the first fixed training scenario (game 
level) and 5 games in a second. The maximum time limit for a 
single game of Pac-Clone is 500 time-steps. 

 To summarize, this proposed Layered Learning method 
decomposes the complex task of capturing prey quickly in 3 
training layers: capture the prey, minimize the hunting 
duration, and an aggregate sub-task to unify what was learned 
in the first 2 layers. To develop the decision making of a team 
of NPC predators, a GA is used by each layer to train sets of 3 
scripts to perform the layer’s sub-task. The genetic operators 
are used to modify the scripts of each team. In every layer, the 
games played are used to evaluate how well each team 
performs at the current sub-task. Each layer’s final population 
is directly copied into the next layer, where only the fitness 
criterion for team evaluation is updated for the new sub-task. 
The best performing team of the last layer’s final population 
represents the evolved team of heterogeneous NPCs. 

(ݔ)݂ = WCapture ∙ ∑ cini=0݊  − WGameDuration  ∙  ∑  ℎݐ݃݊݁ܮ_݁݉ܽܩ_݉ݑ݉݅ݔܽܯ0=݅݊݅݀



V. EXPERIMENTS 
Experiments were established to compare Layered Learning 

with monolithic GAs. The monolithic GA approach uses a 
single fitness function for evolution; it is the equivalent to 
evolving a population with one of Layered Learning’s layers.   

For these experiments, the monolithic approaches use the 
proposed Layered Learning method’s fitness functions. The 
first monolithic approach trains agents to capture Pac-Man, 
using the same fitness function as the first layer in the proposed 
method. The second monolithic approach uses layer two’s 
fitness function and seeks to produce ghosts that minimize the 
game duration. The third and final monolithic approach uses 
the aggregate function of layer three and is completely 
independent of the first two monolithic approaches. Reusing 
Layered Learning’s fitness functions for the monolithic 
approaches allows for fairness in comparison to see if Layered 
Learning’s progressive technique leads to more effective 
production of an NPC team. 

Because the monolithic approaches are single layered GAs, 
the monolithic GA parameters are exactly the same as the 
proposed set-up, only deviating in the number of generations 
per layer. Due to the Layered Learning approach having 50 
generations per layer with 3 layers, each monolithic approach is 
allowed to train with one layer of 150 generations. The 
equivalent total number of generations further promotes 
fairness in the comparison along with the corresponding fitness 
functions between the monolithic and layered approaches.  

The experiments break up the process of evolving NPCs for 
the Layered Learning and monolithic methods into two phases: 
learning and evaluation. In the learning phase, 100 evolutionary 
runs are made that result in each team’s decision making 
behavior to be modified. The evaluation phase takes each 
method’s final population and runs 200 additional games, using 
the same parameters and game scenarios used during the 
learning phase (100 games per game scenario). No scripting 
modification takes place in the evaluation phase. The same 
scenarios and parameters are used in the evaluation and 
learning phases because the goal is to show which method 
performs the best on a trained scenario.  

To assist in the comparisons, each method ranks its 
population based on its respected fitness criterion and gathers 
results on how the method performs with the other fitness 
functions, solely for analysis purposes. The unused metrics 
have no effect on fitness ranking and does not affect the 
performance of any of the evolved teams.  

The experiment results show that the proposed Layered 
Learning with a GA approach performs well against the 
monolithic GAs. This conclusion is determined by the 
performance results of Layered Learning’s progress during the 
learning phase and the best fit generated teams at the end of the 
evaluation phase of each approach. 

As a result of the learning phase, the Layered Learning 
approach was able to evolve its population to progressively 
solve the Pac-Man task. This conclusion is supported by Fig. 2, 
which plots the average aggregate score of each approach’s 
best fit ghost-team received at each of generation over the 
course of 100 independent trials (the shaded regions indicate 

the 95% confidence intervals).  It should be noted that the 
provided confidence intervals are half the value of their 
respective confidence region. From this phase, several 
observations are noted. First, as identified in Fig. 2 and Table 
2, monolithic aggregation outperforms the monolithic captures 
and game duration approaches, in terms of average aggregate 
fitness. Monolithic aggregation excels because its fitness 
function causes the GA to explicitly maximize the aggregate 
fitness function during learning. The other two monolithic 
approaches focus on different measures of fitness, which act as 
handicaps in this aggregate comparison. Table 2 displays the 
average aggregate fitness of the best individual at the end of the 
final generation over 100 trials, where the monolithic aggregate 
approach scored 59.92 (95% confidence interval 0.88), 
monolithic captures scored 59.26 (95% CI 0.99), and 
monolithic game duration scored 53.47 (95% CI 1.27) on 
average. From these averages, there is an advantage monolithic 
aggregation has over the other two monolithic approaches. The 
advantage is slight when comparing the aggregation and 
captures approach because the average fitness for captures falls 
within monolithic aggregation's 95% confidence interval. The 
advantage is more noticeable in game duration because the 
average aggregate score for the game duration approach falls 
outside of monolithic aggregate's 95% confidence interval.  

Second, the Layered Learning method produces individuals 
that rival the top average performing monolithic approach, 
monolithic aggregation. The Layered Learning approached 
produced an average aggregate score of 60.67 (95% CI 0.87). 
Layered Learning’s performance at this phase is attributed to 
the GA training the population on all 3 sub-tasks and spending 
the last segment of learning on maximizing the aggregate score. 

 
Figure 2. Average aggregate fitness of the best team per generation (95% 
confidence intervals are shaded) 
 
TABLE 2. AVERAGE AND MAXIMUM FINAL GENERATION AGGREGATE FITNESS 
OF THE BEST TEAMS OF EACH LEARNING METHOD  

Method Average Std Dev 95% CI Max 
Layered 
Learning 60.67 5.427846 0.86862 67.594 

Aggregate 59.92044 5.473278 0.875891 68.11 
Captures 59.26306 6.205052 0.992997 68.008 
 Duration 53.46854 7.916967 1.266955 68.08 

 

Third, oscillations in average aggregate fitness are 
noticeable when Layered Learning transitions from layer to 
layer. These oscillations are caused by the layered approach 
changing its fitness evaluation every 50 generations. As 
displayed on Table 2, on average, the monolithic captures and 



aggregate approaches outperform the game duration approach 
when the learning phase is complete. This performance 
difference explains how when the fitness evaluation is changed 
to an underperforming fitness function then the performance of 
the overall task can suffer; the opposite is true for well-
performing fitness functions, as observed when the third layer 
begins and trains with the aggregate sub-task. The dip in 
performance indicates that the composition of layers may not 
be ideal for this problem. 

Finally, the jump in aggregate fitness between the second 
and third layer shows Layered Learning’s robustness. Although 
the aggregate fitness score suffers in the second layer, the 
layered approach is able to quickly recover early in the third 
layer. The robustness is caused by the fitness function 
transitions inherent to Layered Learning; in this composition of 
sub-tasks, the layered approach moves to a fitness function that 
performs the overall task well to third layer. The robustness is 
also attributed to the layered approach's ability to retain 
information from past layers. This ability to call on knowledge 
learned in previous layers permits the approach to quickly 
revert unnecessary changes made in the game duration layer 
and use helpful knowledge obtained from the first two layers 
during the aggregate sub-task.  

The learning phase demonstrates that this approach of 
Layered Learning produces a team of NPCs that performs as 
well as two of the monolithic approaches (captures and 
aggregate) and outperforms the monolithic game duration 
approach on average during learning. Although Layered 
Learning produces the best aggregate scoring team at the end of 
the learning phase, the averages for the top performing 
monolithic approaches are within Layered Learning's 95% 
confidence interval. In addition, the learning phase results 
demonstrate how adaptable and robust Layered Learning is at 
learning a task by being able to overcome sub-optimal task 
decomposition and produce the best performing aggregate 
results on average. 

As the learning phase concentrated on comparing the 
different approaches by examining performance averages, the 
evaluation portion is concerned with answering the question of 
which approach produces the best team of NPCs. From 
evaluation, the Layered Learning method's best individual 
produced a ghost team that was capable of capturing Pac-Man 
161 out of the 200 attempts and in an average 90.59 (standard 
deviation 87) time-steps. With both metrics, the Layered 
Learning method produced an aggregated score of 50.9146. 
The aggregate approach produced an 86% capture rate with 
172 captures (std. 0.35), and an average of 84.22 (std. 67.49) 
time-steps per game. The monolithic method with the capture 
Pac-Man sub-task produced 163 (std.  0.39) captures and an 
average game duration of 107.76 (std. 146.42). The monolithic 
method based on minimizing game duration captured Pac-Man 
85% of the time (std. 0.36) in the 200 evaluation games and 
required 75.03 (std. 53.69) time-steps to do so on average. 
Tables 3 and 4 display the evaluation phase results of the 200 
games for each of the methods.  

The main observation is how the Layered Learning method 
performed compared to the aggregate methods. To make this 
comparison, T- and Z-tests were made to see if there is any 

significant difference between the averages of the best 
performing teams generated between the different approaches. 
Although Z-tests show that there is no significant difference 
between any of the monolithic and layered learning approaches 
for the captures metric, the best performing Layered Learning 
team produced the least amount of captures and the third best 
averaged game duration. T-tests show there are no significant 
differences between the layered and the monolithic aggregate 
and captures approaches for minimizing game duration.  While 
the comparison between Layered Learning and the monolithic 
game duration approach is quite close, once the critical values 
are adjusted via the Holm-Bonferoni correction for 3-way 
comparison, there’s no significant difference here, as well. 
Lastly, there are no significant differences in means between 
the capture rates of Layered Learning and any of the monolithic 
methods. P-values from the T- and Z-tests can be found on 
Table 5.  In the aim of comparing average outputs of the 
monolithic and the proposed layered approaches, the 
conclusion of which method outperforms the other cannot be 
definitively made. 

TABLE 3. EVALUATION RESULTS OF THE BEST PERFORMING MONOLITHIC 
CAPTURES AND GAME DURATION GAS TEAMS 

  
  

Sub-task Captures Sub-task Duration 
Captures Duration Captures Duration

Sum 163 21552 169 15006 

Average 0.82 107.76 0.85 75.03 

Std Dev 0.39 146.42 0.36 53.69 

 
TABLE 4. EVALUATION RESULTS FROM THE BEST PERFORMING MONOLITHIC 

AGGREGATE GA AND LAYERED LEARNING TEAMS 
  
  

Sub-task Aggregate Layered Learning 
Captures Duration Captures Duration

Sum 172 16843 161 18118 

Average 0.86 84.22 0.81 90.59 

Std Dev 0.35 67.49 0.4 87 

 
TABLE 5. P-VALUES FROM T- AND Z-TEST RESULTS COMPARING LAYERED 

LEARNING TO EACH MONOLITHIC METHOD 

Method Comparison 
Captures 
(Z-Test) 

Duration
(T-Test) 

Layered Learning- Mono. Aggregate 0.0704 0.4134 

Layered Learning- Mono. Duration 0.1462 0.0321 

Layered Learning- Mono. Captures 0.3994 0.1549 
 

The evaluation phase results show that the monolithic game 
duration approach produced the best aggregated fit team. At 
first glance, this conclusion seems contradictory to what was 
found in the learning phase. However, the evaluation phase is 
concerned with examining the upper tails of the distributions of 
the 4 approaches and not the averages. In both phases, 
monolithic game duration produced the best aggregate 
performing team, although the average team produced with this 
method was the most underperforming with the highest 
variance among the approaches. Table 2 helps explain how the 
monolithic game duration approach produced an outlier that 



excelled in the aggregate evaluation by listing the aggregate 
score of the best produced team for each approach. As a result 
of the learning phase, 95% of teams produced with the game 
duration method hovered around the average aggregate score of 
53.47. 

The experiments generated results that justify the use of 
Layered Learning to evolve a team of NPC agents. The layered 
approach performs statistically as well as monolithic methods 
under the same conditions and with the same metrics collected. 
During the learning phase, the Layered Learning method 
outperformed the monolithic approaches by producing the 
highest average aggregation score. It should be noted that the 
top 2 monolithic approaches of captures and aggregation 
produced averages that fall within range of Layered Learning’s 
aggregate 95% confidence interval. The evaluation phase 
deemed the monolithic game duration approach to be the top 
performing. Although the best team is considered an outlier, 
the outcome is interesting as the approach generated the worst 
performing average aggregate score among the approaches at 
the end of the learning phase. From these experiments, one can 
conclude that Layered Learning has demonstrated that it is an 
effective alternative to the standard monolithic approach of 
evolving decision making. 

VI.  CONCLUSION 
The work presented here produces an effective team of 

heterogeneous agents who can perform a shared, complex task. 
To accomplish this feat, Layered Learning with a Genetic 
Algorithm was used to decompose a complex task into simpler 
components and train an agent team how to perform each sub-
task. The proposed method decomposed the shared task into 3 
layers: 1) perform the task effectively; 2) perform the task 
efficiently; 3) perform the task effectively and efficiently. The 
final layer aggregates the sub-tasks of the first 2 layers and 
represents the overall task to learn.  

To evaluate the performance of the proposed layered 
method, a team of video game NPCs was evolved to learn how 
to excel in a predator-prey scenario. Pac-Clone, a Pac-Man 
inspired game was used to set the environment, roles, and 
constraints of the agents. The implementation saw a team of 
NPC ghosts locate and capture Pac-Man with a high probability 
and in a relatively small amount of time. The results are 
interpreted that Layered Learning performs statistically as well 
as the standard monolithic GA method to evolve the decision 
making of computer-based agents. The results are significant 
because conflicting literature exists differing on the 
performance of the layered-based approach. 

This work also shows that Layered Learning has benefits to 
being deployed over monolithic GAs. First, the technique 
provides a natural way of teaching a complex task by 
decomposing it into simpler sub-components. Second, Layered 
Learning creates an organized approach of instruction through 
phases of simple sub-tasks to learn. Third, decomposing a task 
into 3 sub-tasks that progressively makes the agent team 
effective and efficient is proven to be a valid layering 
technique. Finally, Layered Learning is shown to be a robust 
method of learning. The robustness is demonstrated by the 
technique’s ability to overcome underperforming layers and 
retain acquired knowledge from well-performing ones. Future 
work will examine the role of adequately decomposing the task 
into layers, study how certain tasks should be decomposed, and 
the effects varying task decompositions will have on 
performance. In summary, the experiments showed that the 
proposed Layered Learning method produces a team of 
heterogeneous NPCs that performs similarly effective to those 
evolved with a monolithic approach but the layered technique 
stands out as it has several key benefits of being deployed.  
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