
Evolving a Non-playable Character Team with
Layered Learning

Sean Mondesire
Electrical Engineering and Computer Science

University of Central Florida
Orlando, FL, USA

mondesire@knights.ucf.edu

R. Paul Wiegand
Institute for Simulation and Training

University of Central Florida
Orlando, FL, USA

wiegand@ist.ucf.edu

Abstract— Layered Learning is an iterative machine learning
technique used to train agents how to perform tasks. The
technique decomposes a task into simpler components and trains
the agent to learn how to perform progressively more complex
sub-tasks to solve the overall task. Layered Learning has been
successfully used to instruct computer programs to solve
Boolean-logic problems, teach robots how to walk, and train
RoboCup soccer playing agents.

The proposed work answers the question of how well does
Layered Learning apply to the evolved development of a
heterogeneous team of Non-playable Characters (NPCs) in a
video game. The work compares the use of Layered Learning
against evolving NPCs with monolithic based approaches.
Experiment data show that Layered Learning can result in the
successful development of NPCs and demonstrates that the
approach performs well against monolithic evaluation.

Keywords: Layered Learning, Genetic Algorithm, Decision
Making

I. INTRODUCTION
Layered Learning is an iterative machine learning technique

that has been used to automate the process of training
computer-based agents to perform tasks. The model
decomposes complex tasks into simpler sub-tasks and trains the
agent on one sub-task at a time. The aim with Layered
Learning is that once the agent has learned to perform all of the
sub-tasks, then the agent will be able to perform the overall
assigned task. The approach attempts to lessen the arduous goal
of learning how to perform a complex task at once by learning
how to perform a series of increasingly difficult component
tasks, where none is more complicated than the original task.
The decomposition from a single task to a set of multiple
criteria allows the agent to distribute the workload of learning
across several phases instead of being overwhelmed all at once.

Layered Learning is being used to develop the decision
making abilities of both simulated and physical agents.
Examples of uses of Layered Learning include using the
method to teach a computer-based agent to solve Boolean-logic
problems [1], to train a robot how to walk [2], and teach
simulated robots how to play variations of soccer [3] [4].

The work presented here seeks to determine how
effectively Layered Learning can be applied to the

development of an evolved heterogeneous team of Non-
playable Characters (NPCs) in video games. To make this
determination, the work uses Layered Learning with a Genetic
Algorithm (GA) to modify the behaviors of a team of NPCs in
a predator-prey scenario. The approach evolves each
teammate’s behaviors with the goal of giving them the ability
to solve a task shared among the entire team. The proposed
method decomposes the task into 3 sub-task layers: learn how
to perform the basic task 1) effectively, 2) efficiently, and
finally 3) effectively and efficiently at the same time.

For performance evaluation, Layered Learning is compared
with several GAs using monolithic fitness criteria variations.
This evaluation is sought because existing work that compares
the performance of Layered Learning and monolithic GAs
leaves questions of when and how Layered Learning should be
used to develop teams of agents.

The results for this paper suggest that Layered Learning is
successful in the production of a heterogeneous multi-agent
team for a specific class of predator-prey problems, and the
approach may be effective in more complex domains such as
the heavily tested RoboCup and other robotic domains. In
addition, favorable results mean the approach can be used as an
additional method of developing the decision making ability for
an evolved team of agents assigned shared complex tasks.

II. LAYERED LEARNING
Layered Learning has been used to develop the decision

making ability of autonomous robotic and other computer-
controlled agents. Proposed by Stone and Veloso, Layered
Learning extends the robot shaping [5] idea of decomposing a
task into simpler components by training the learning agent on
progressively more complex sub-tasks one at a time [3]. The
bottom-up approach sees the agent first learn how to perform
the less difficult sub-tasks before progressing to the more
complex sub-tasks. Because an agent learns one sub-task at a
time, each sub-task is seen as a layer of training the agent
experiences before learning to perform the overall task.

 Each layer is comprised of at least one training scenario
that is designed to train the agent to perform the layer's sub-
task independent of other sub-tasks. Within each layer, the
agent learns and adapts its decision making knowledge to
perform the assigned sub-task. The agent remains in the layer
until the layer's halting criteria is satisfied. The halting criterion

978-1-61284-069-7/11/$26.00 ©2011 IEEE

is a specified level of proficiency in performing the sub-task, a
limit on time training in a layer, or any other condition that
signals the learning model when to progress to the next layer.

The knowledge acquired in each layer is progressive
because the agent's knowledge-state at the end of one layer is
fed into the next layer. This forwarding of knowledge allows
each layer to build on top of what was previously learned by
adding new knowledge during the training of the next sub-task.

Within layers, Layered Learning relies on another machine
learning technique to be employed to develop agent behaviors.
Neural Networks [6] and genetic programming (GP) [7] have
been used to manipulate copies of the agent and evaluate how
well the agent performs the current layer's sub-task. The
modification-evaluation process within a layer repeats until the
layer's halting criterion is satisfied before moving to the next
layer.

Because the process of Layered Learning is based on
successive layers, the aim of the layered approach is to have the
agent be able to perform the assigned task once all of the sub-
tasks have been learned. With that said, Layered Learning is
best used when a task is too complex to be learned in one phase
and when the task can be decomposed into simpler sub-tasks.

Layered Learning is a natural choice for the development of
decision making abilities of autonomous agents because of its
break down of a complex task into simpler components. With
autonomous agent design, such as the development of NPCs,
Layered Learning provides an intrinsic, abstract scheme for
agent training. Any agent developer can employ this natural
learning model to give shape to an agent by teaching one
behavior at a time or how to perform basic actions before
moving to more complex ones.

The work proposed here uses Layered Learning to evolve a
team of NPCs. Layered Learning is chosen because it has
shown to reduce the solution space at each layer, lessen the
pressure of discovering the solution to a complex task all at
once, and provide a natural and simple way of decomposing an
arduous task into manageable portions [8] [6].

III. RELATED WORK
The motivation behind Layered Learning is to provide an

effective model of decision making for computer-based agents.
Since the model’s introduction, several noteworthy works have
expanded the learning technique and explored new areas where
Layered Learning can be successfully deployed.

Stone and Veloso first used Layered Learning to train
simulated robots to play soccer [3]. The work produced an
agent team that adhered to the rules of soccer prescribed by the
RoboCup Challenge. Their model splits learning into two
phases. The first phase trains the agent to perform basic,
individualistic actions, such as movement. The second phase
trains the agent to perform more complex tasks, including
team-involvement behaviors, such as passing. Their work
provided the introduction of the Layered Learning model and
shows how the decomposition of a complex task could train
agents how to progressively learn sub-tasks.

Layered Learning has also been applied to the RoboCup
sub-domain of Keep-away. In Keep-away, instead of trying to
score goals, players with the role of keepers try to maintain ball
possession by passing the ball among teammates. Takers are
tasked with stealing ball possession from the keepers.

Gustafson and Hsu use Layered Learning to train a team of
keepers [7]. Their method uses GP to produce a controller that
determines which actions the keepers will perform. The results
from their experiments show that Layered Learning can
produce Keep-away teams that outperform keeper
implementations based on a standard GP technique with an
aggregated fitness function and a hand-coded approach.

Whiteson, Kohl, Miikkulainen and Stone [6] also tackled
the development of keepers. Their work compares Layered
Learning’s performance against Tabula Rasa with Incremental
Reuse and co-evolution. Here, Neural Networks control keeper
decisions and are evolved in each layer. The coevolutionary
approach does not decompose the task but instead trains the
keepers on the entire task at once. These coevolved agents are
homogeneous because each agent shares the same decision
making knowledge. Experiments show that the coevolutionary
approach produces the best team of keepers, opposite of
Gustafson and Hsu’s findings that Layered Learning produces
a better keeper than an aggregate function. It should be noted
that both works differ in the machine learning technique used
within layers, aggregation function, and implementation.

Jackson and Gibbons [1] examined Layered Learning with
GP to solve Boolean-logic problems. Similar to Gustafson and
Hsu, their work evolved a genetic program that makes the
Boolean-logic decisions to solve the problems at each layer.
Their work also compared Layered Learning with GP against
an approach with standard GP (an aggregate/monolithic fitness
function), and an Automatically Defined Function GP based
system. Results show that Layered Learning solved the
Boolean-logic problems with less computational effort than the
standard GP and ADF approach.

 The work presented in this paper uses Layered Learning to
tackle high-level tasks in a multi-agent environment. This work
analyzes the effectiveness of using Layered Learning to evolve
a team of heterogeneous agents against monolithic GAs.

IV. METHOD
The proposed work provides a method of producing a team

of agents to perform a shared task. To achieve this goal,
Layered Learning is used to decompose a complex task into
simpler components and trains agents to perform each sub-task.

 There are a number of qualities that distinguish this work
from others. First, the evolved agents are heterogeneous
because each team member has its own set of knowledge
evolved to learn the shared task. The heterogeneity creates
diversity within the team and the potential for team roles to
emerge. Second, the team of NPCs is evolved as one unit to
produce the best composition of roles and distinct decision
making to achieve the shared goal. Third, the proposed method
designs the layers in a way where the complex task is
decomposed into sub-tasks that aim at improving task
performance at each layer. The final layer unifies all of the sub-
tasks with an aggregate function that ultimately determines the

quality of performance. Finally, this method allows the same
training scenario to be used for each layer and sub-tasks.
Typically, agents in Layered Learning train on different
scenarios for each layer to allow the agent to fully focus on the
sub-task at hand. The proposed method uses the same scenario
but with different fitness criteria for each layer. This scenario
reuse allows the agent developer to have more time on other
development tasks.

A predator-prey scenario is used to evaluate the
effectiveness of the proposed method. In the scenario, a team of
agents is assigned the shared complex task of capturing its prey
as effectively and efficiently as possible. To implement the
scenario, a Pac-Man-inspired game, Pac-Clone, is used to
provide the game environment, agent constraints and roles, and
rules the agents follow for task achievement. In the
implementation, the ghosts in Pac-Man represent the NPC team
that is being learned. The shared complex task the team is
given is to capture Pac-Man with a high probability of success
and in as few time-steps as possible.

To train the team of NPCs, the ghosts’ task is decomposed
into three layers: 1) capture Pac-Man, 2) minimize the game’s
duration, and 3) an aggregate function that rewards fast Pac-
Man captures. The capture Pac-Man sub-task favors ghost
teams that are able to locate and capture the target
(effectiveness). The capture sub-task does not discriminate how
ghosts capture their prey but rewards their performance only if
the team is able to accomplish the sub-task.

The second layer seeks to minimize game duration
(efficiency). There are two ways a game can terminate before it
has reached the time-limit: 1) a ghost has captured Pac-Man
and 2) Pac-Man has achieved his own task. The first cause
means the ghosts solved the sub-task from the first layer; the
second means the ghosts were unsuccessful at capturing Pac-
Man. Regardless of the cause of a game ending prematurely, in
this sub-task, the team is only tasked with ending the game as
early as possible.

The final layer aggregates both sub-tasks by rewarding
teams that can capture Pac-Man the most often and the fastest
(effectiveness + efficiency). The aggregation creates the need
for the team to be able to perform the first two sub-tasks
together and removes any reward for Pac-Man eluding capture
as seen in the second layer. With the complex task decomposed
into these 3 layers, the team of NPCs is evolved in progressive
steps which lead to the overall task to be addressed.

The following subsections discuss the implementation of
the proposed use of Layered Learning. Here, the agent
environment and the evolutionary training process are
described in detail.

A. Pac-Clone
Pac-Clone is a 2D video game that is inspired by Pac-Man

[9]. It was developed to evaluate different machine learning
techniques’ abilities to produce agent decision making
capabilities. The Pac-Man concept is useful because it is an
established predator-prey problem that encourages team actions
to accomplish a shared task. In addition, Pac-Man provides an
interesting dynamic where the roles of predator and prey are
flipped at certain points in the game. Dynamic role reversal

makes the problem challenging for the agents to learn both
predator and prey-like decisions.

In short, the Pac-Clone game consists of two opposing
sides: the playable character Pac-Man and three NPC ghosts.
Pac-Man is tasked with collecting all of the dots, power-pills,
and fruit scattered through the game environment by moving to
their locations. In Pac-Man, the ghost team is tasked with
preventing Pac-Man from achieving his task by capturing him.
Captures are achieved by a ghost sharing the same location in
the environment as Pac-Man at the same time.

In Pac-Clone, when Pac-Man consumes a power-pill, he is
able to capture ghosts for 15 time-steps. Power-pill
consumption reverses the roles in the game by making Pac-
Man the predator and the ghosts the prey. Once a ghost is
captured, it is eliminated from the game environment. If
another power-pill was not consumed within this 15 time-step
duration, Pac-Man is vulnerable to capture by a ghost again at
the end of the interval. Ghosts cannot consume any items in the
environment but can block Pac-Man from obtaining an item by
standing at the item’s location or capturing Pac-Man.

Pac-Clone follows all of the rules of the classic Pac-Man
game, as outlined in [10], with a few variations. Differences
include level design, character movement, scoring, and game
termination. For game termination, Pac-Man is given one life
and the game has a maximum time limit. If Pac-Man is
captured, collects all of the dots, power-pills, and fruit, or the
time-limit expires, then the game ends. Each agent is restricted
in movement by being permitted to move to at most one space
per time-step and only in up, down, left, and right directions.
Both Pac-Man and ghost characters use the A* route planning
algorithm to generate routes more than two spaces away.
Agents are not permitted to move to spaces where walls are
located and two ghosts cannot occupy the same map location.

To make the game more challenging, each character has a
limited view of the environment, meaning they can only detect
items and agents from sensors and perceptions. All agents have
access to the immediate squares one space around them from
its sensor. Each character also has a heading that change in the
up, down, left, and right directions. Heading is used to give the
characters perceptions of the environment based on line-of-
sight (LOS). LOS is interrupted if another agent or wall crosses
its heading path.

 Pac-Clone uses scripting to drive the actions of the
characters. Each character has its own script that determines
what actions to perform based on inputs from the environment
and character’s state. At every time-step in the game, each non-
captured character is polled for an action to perform. It is up to
the character’s script to reply with an action; otherwise, the
character will not perform a new action for that time-step.
Some actions require more than one time-step to perform to
completion, for example, moving to a location two or more
spaces away. Actions like these produce a sequence of actions
the agent will perform in subsequent time-steps unless
interrupted with a new action or an invalid action from the
game’s engine. Each script is broken down into actions,
conditionals, and IF-statements. Table 1 lists all actions and
conditionals used in Pac-Clone. Actions are the individual
behaviors a ghost can execute. The “clear route to follow”

action stops the agent from continuing on a route it is currently
following. “Attack” sends the ghost along a route to Pac-Man’s
last known location. This action only executes if Pac-Man’s
location is known by the ghost through communication,
perception, or sensor detection. “Evade” sends the ghost in the
opposite direction of Pac-Man. “Keep the same heading”
maintains the ghost’s current heading. “Move randomly”
moves the ghost to a random 4-directional one space location.
“Move to staring location” sends the ghost back to its starting
location on the map. “Noop” explicitly tells the game engine
that there is no other action to perform for the current time-
step. “Set heading on movement” changes the ghost’s heading
to follow the direction it is moving to. The “set heading”
actions sets the ghost’s heading to be up, down, left, or right.
“Transmit Pac-Man’s location” sends a message with Pac-
Man’s last detected location to all of its teammates. This action
represents agent communication and the sharing of knowledge.

TABLE 1. SCRIPT ACTIONS AND CONDITIONALS IN PAC-CLONE
Actions Conditionals

Clear Route to Follow Am I Already Moving to the
Planned Destination

Attack Have I Generated a Route

Evade Is Movement List Empty

Keep the Same Heading Is Pac-Man Vulnerable

Move Randomly Is Pac-Man Detected

Set Heading Is Pac-Man Detected by
Communication

Set Random Heading Is Pac-Man Detected by
Perception

Set Heading on Movement Is Pac-Man Detected by Sensor

Transmit Pac-Man’s Location Is Pac-Man within n Spaces

Move to Starting Location

Noop

Multiple actions can be given to the game engine at once
but priority goes to the order the actions are received if there
are conflicting actions, e.g. multiple heading changes,
movement requests, and the presence of a noop with any other
action. Although basic, this set of actions gives the ghosts the
foundation of what is needed to capture their prey.

IF-statements evaluate conditionals that lead to nested IF-
statements or actions to be executed based on the conditional’s
outcome. Conditionals evaluate a specific aspect of a ghost’s or
environment’s state. The “Am I already moving to the planned
destination” conditional is true if the ghost is currently
following a route to a specified location. “Have I generated a
route” is true if the ghost has produced a route to follow and is
travelling along it. “Is movement list empty” is true if the ghost
has movement actions to follow. “Is Pac-Man detected” is true
if Pac-Man is currently detected by communication
transmitted, by self-perception, or by the ghost’s sensor. The
communication detection conditional is based on the action to
transmit Pac-Man’s location. Pac-Man is detected by
perception if the ghost’s heading is pointing at Pac-Man and

there is LOS. Pac-Man detection from a sensor is activated if
Pac-Man is within one space of the ghost. “Is Pac-Man
vulnerable” is true if Pac-Man has not consumed a power-pill
within 15 time-steps. If this conditional is true, the ghost can
capture Pac-Man if they share the same environment location.
The range conditionals return true if Pac-Man lies within the
appropriate range. For instance, the condition “is Pac-Man
within 3 spaces” is true if Pac-Man’s location is 3 or less
spaces from the ghost.

IF-statements can have nested conditionals with the use of
AND, OR, and NOT operators. The IF-statements determine
which actions to execute and when. Fig. 1 is an example of a
ghost script with 2 top-level IF-statements. Together, the 2 IF-
statements guide the agent towards or away from Pac-Man,
depending Pac-Man detection and vulnerability state.

This implementation of Layered Learning method outputs
scripts for each NPC ghost to eliminate Pac-Man in Pac-Clone.
Because scripts are used to drive the decision making of each
game character, and the fact that the game provides a defined
agent environment, set of constraints, and task, Pac-Clone is an
excellent test bed for analyzing how the proposed method
performs at solving a shared complex task for a team of agents.
IF(isPacManDetected AND isPacManVulnerable,
attack,moveRandomly)

IF(isPacManDetected AND NOT(isPacManVulnerable)
AND isPacManWithIn3Spaces, evade,
MoveToStartingLocation)

Figure 1. Pac-Clone ghost script example

B. Layered Learning with a Genetic Algorithm
The goal of the implementation is to produce a team of

three ghosts that is able to capture Pac-Man the fastest. To
accomplish this goal, the implementation evolves three scripts
together that represent the decision making knowledge of the
teammates of a ghost team. To start the evolution process, a
collection of teams are created. Each team in the collection is
generated initially with a script of random conditions and
actions. At each layer, the collection of teams makes up the
population that is inputted into a GA and each team is denoted
as a chromosome. The GA feeds each team’s set of scripts into
Pac-Clone to play a series of games against a hard-coded, static
script Pac-Man, evaluates how well each team performs the
current sub-task, modifies the scripts, and repeats until the
halting condition has been reached. Here, the halting condition
is 50 generations. In each generation, every team will play 10
games, be evaluated on a sub-task’s fitness function, and
experience modification through a genetic operator or elitism.

The population of teams at the end of the GA phase is
passed onto the next layer. The next layer repeats the GA
process but with a different sub-task and a different fitness
evaluation criterion. Once the final layer is complete, the team
that produces the best aggregate results in the last batch of
games is the output of the proposed method. The descriptions
below further explain each GA component in detail.

C. Chromosomes
Each chromosome in the GA is made up of three alleles that

represent the scripts that drive the decisions of the three ghosts
in the game. During the creation of the population, each script

initially contains at most 20 randomly generated, top-level IF-
statements; the script is allowed to grow and shrink in IF-
statement size over the entire learning phase. Each top-level IF-
statement has no more than 4 degrees of nested IF-statements,
meaning the maximum number of IF-statement levels that can
exist in the script is 5 nested IFs deep. The number of nested
IF-statements decreases by one at each degree level below the
top. Each IF-statement is also restricted to have at most 5
conditionals and 5 actions that correspond to true and false
paths. The number of nested IF-statements, conditionals, and
actions are randomly generated during each IF-statement’s
creation. Size limitations are in place because individual scripts
can become long, redundant, and unreadable for analysis.

D. Pac-Man
 Pac-Man’s static script aims at collecting all of the dots,

power-pills, and fruit through the current level. If Pac-Man
detects a ghost while vulnerable, he will evade the ghost. If
Pac-Man is invulnerable and detects a ghost, he will pursue and
attack the ghost until the ghost is captured or Pac-Man becomes
vulnerable. To make Pac-Man efficient, every dot, power-pill,
and fruit location is stored in a memory bank until Pac-Man
reaches that location. At times when Pac-Man does not
perceive or sense one of these items, he checks his memory
bank for an item to pursue. If Pac-Man is not evading,
attacking, or in pursuit of an item, he is moving randomly, with
the hope of detecting an undiscovered item. Although Pac-
Man’s script is static and susceptible to exploitation, it provides
a formidable training foe and standardizes team evaluation.

E. Fitness Function
 During each layer, one of the three discussed fitness

functions is used to rank the teams. In the first layer, teams that
produce the highest probability of capturing Pac-Man in a
generation receive the highest fitness. The second layer
rewards teams that lead to shorter game durations. Finally, the
third layer gives preference to teams that excel in the aggregate
evaluation of capturing Pac-Man with a high success rate and
with time efficiency. Below is the equation for calculating the
aggregate fitness function. Capture and game duration weights
were used to give more importance to Pac-Man captures and to
reduce occurrences of short game durations from ghosts
allowing Pac-Man to achieve his task. f(x) in (1) is the function
used to calculate the aggregate fitness for a chromosome team
after it has played a set of games, x. WCapture and WGameDuration
are the fixed weights that scale the capture and game duration
values; they are set at 80 and 20, respectively. n is the total
number of games played by a team in a generation.
Maximum_Game_Length is the constant limit of how long a
game can be played, and is fixed at 500 time-steps. ci is the
capture result in the ith game of the sample of games passed in
by x. di is the game duration in time-steps of the ith game in the
set of games x.

(1)

F. Elitism
 Upon the completion of a generation, the best fit 10% of the
population is copied directly into the succeeding generation’s
population. This form of elitism guarantees that the best fit
chromosomes are not lost after applying the genetic operators
to make up the rest of the next generation’s population.

G. Selection and the Genetic Operators
 Tournament selection for reproduction in the GA works as

follows: 10% of the population is randomly selected and the
best fit chromosome is chosen to be a parent for crossover. The
process is performed again to select a second parent. To
perform crossover, a random location on a ghost’s script is
selected from the two parents. All of the actions and IF-
statements from the beginning to the random crossover point of
the script in the first parent are copied to the first offspring. All
of the actions and IF-statements from the random point to the
end of the script on the second parent are appended to the first
offspring’s script. The process is repeated for the second
offspring, but this time starting by copying the beginning
sequence from the second parent followed by the ending
sequence from the first parent. Using these methods of
selection and crossover permits only better fit chromosomes to
pass their information to future generations and emphasize the
idea of survival of the fittest.

Mutation occurs by going through every top-level IF-
statement in an offspring’s script and randomly generating a
number. If the random number is less than 10% (the mutation
rate) then that IF-statement is replaced with another random IF-
statement. Also, every non-elite chromosome has a 1% chance
that it will be replaced with a new, randomly generated set of
scripts. Mutation and a chance of new chromosome production
adds variability to the population and assists in fighting the
localization problem, where chromosomes start fixating on a
single solution and never explore other possibilities.

H. Genetic Algorithm Parameters
The normally distributed population of the GA is fixed at

50 chromosomes and evolved for 50 generations for each
fitness function. At every generation, each chromosome plays
10 games, 5 games in the first fixed training scenario (game
level) and 5 games in a second. The maximum time limit for a
single game of Pac-Clone is 500 time-steps.

 To summarize, this proposed Layered Learning method
decomposes the complex task of capturing prey quickly in 3
training layers: capture the prey, minimize the hunting
duration, and an aggregate sub-task to unify what was learned
in the first 2 layers. To develop the decision making of a team
of NPC predators, a GA is used by each layer to train sets of 3
scripts to perform the layer’s sub-task. The genetic operators
are used to modify the scripts of each team. In every layer, the
games played are used to evaluate how well each team
performs at the current sub-task. Each layer’s final population
is directly copied into the next layer, where only the fitness
criterion for team evaluation is updated for the new sub-task.
The best performing team of the last layer’s final population
represents the evolved team of heterogeneous NPCs.

(ݔ)݂ = WCapture ∙ ∑ cini=0݊ − WGameDuration ∙ ∑ ℎݐ݃݊݁ܮ_݁݉ܽܩ_݉ݑ݉݅ݔܽܯ0=݅݊݅݀

V. EXPERIMENTS
Experiments were established to compare Layered Learning

with monolithic GAs. The monolithic GA approach uses a
single fitness function for evolution; it is the equivalent to
evolving a population with one of Layered Learning’s layers.

For these experiments, the monolithic approaches use the
proposed Layered Learning method’s fitness functions. The
first monolithic approach trains agents to capture Pac-Man,
using the same fitness function as the first layer in the proposed
method. The second monolithic approach uses layer two’s
fitness function and seeks to produce ghosts that minimize the
game duration. The third and final monolithic approach uses
the aggregate function of layer three and is completely
independent of the first two monolithic approaches. Reusing
Layered Learning’s fitness functions for the monolithic
approaches allows for fairness in comparison to see if Layered
Learning’s progressive technique leads to more effective
production of an NPC team.

Because the monolithic approaches are single layered GAs,
the monolithic GA parameters are exactly the same as the
proposed set-up, only deviating in the number of generations
per layer. Due to the Layered Learning approach having 50
generations per layer with 3 layers, each monolithic approach is
allowed to train with one layer of 150 generations. The
equivalent total number of generations further promotes
fairness in the comparison along with the corresponding fitness
functions between the monolithic and layered approaches.

The experiments break up the process of evolving NPCs for
the Layered Learning and monolithic methods into two phases:
learning and evaluation. In the learning phase, 100 evolutionary
runs are made that result in each team’s decision making
behavior to be modified. The evaluation phase takes each
method’s final population and runs 200 additional games, using
the same parameters and game scenarios used during the
learning phase (100 games per game scenario). No scripting
modification takes place in the evaluation phase. The same
scenarios and parameters are used in the evaluation and
learning phases because the goal is to show which method
performs the best on a trained scenario.

To assist in the comparisons, each method ranks its
population based on its respected fitness criterion and gathers
results on how the method performs with the other fitness
functions, solely for analysis purposes. The unused metrics
have no effect on fitness ranking and does not affect the
performance of any of the evolved teams.

The experiment results show that the proposed Layered
Learning with a GA approach performs well against the
monolithic GAs. This conclusion is determined by the
performance results of Layered Learning’s progress during the
learning phase and the best fit generated teams at the end of the
evaluation phase of each approach.

As a result of the learning phase, the Layered Learning
approach was able to evolve its population to progressively
solve the Pac-Man task. This conclusion is supported by Fig. 2,
which plots the average aggregate score of each approach’s
best fit ghost-team received at each of generation over the
course of 100 independent trials (the shaded regions indicate

the 95% confidence intervals). It should be noted that the
provided confidence intervals are half the value of their
respective confidence region. From this phase, several
observations are noted. First, as identified in Fig. 2 and Table
2, monolithic aggregation outperforms the monolithic captures
and game duration approaches, in terms of average aggregate
fitness. Monolithic aggregation excels because its fitness
function causes the GA to explicitly maximize the aggregate
fitness function during learning. The other two monolithic
approaches focus on different measures of fitness, which act as
handicaps in this aggregate comparison. Table 2 displays the
average aggregate fitness of the best individual at the end of the
final generation over 100 trials, where the monolithic aggregate
approach scored 59.92 (95% confidence interval 0.88),
monolithic captures scored 59.26 (95% CI 0.99), and
monolithic game duration scored 53.47 (95% CI 1.27) on
average. From these averages, there is an advantage monolithic
aggregation has over the other two monolithic approaches. The
advantage is slight when comparing the aggregation and
captures approach because the average fitness for captures falls
within monolithic aggregation's 95% confidence interval. The
advantage is more noticeable in game duration because the
average aggregate score for the game duration approach falls
outside of monolithic aggregate's 95% confidence interval.

Second, the Layered Learning method produces individuals
that rival the top average performing monolithic approach,
monolithic aggregation. The Layered Learning approached
produced an average aggregate score of 60.67 (95% CI 0.87).
Layered Learning’s performance at this phase is attributed to
the GA training the population on all 3 sub-tasks and spending
the last segment of learning on maximizing the aggregate score.

Figure 2. Average aggregate fitness of the best team per generation (95%
confidence intervals are shaded)

TABLE 2. AVERAGE AND MAXIMUM FINAL GENERATION AGGREGATE FITNESS
OF THE BEST TEAMS OF EACH LEARNING METHOD

Method Average Std Dev 95% CI Max
Layered
Learning 60.67 5.427846 0.86862 67.594

Aggregate 59.92044 5.473278 0.875891 68.11
Captures 59.26306 6.205052 0.992997 68.008
 Duration 53.46854 7.916967 1.266955 68.08

Third, oscillations in average aggregate fitness are
noticeable when Layered Learning transitions from layer to
layer. These oscillations are caused by the layered approach
changing its fitness evaluation every 50 generations. As
displayed on Table 2, on average, the monolithic captures and

aggregate approaches outperform the game duration approach
when the learning phase is complete. This performance
difference explains how when the fitness evaluation is changed
to an underperforming fitness function then the performance of
the overall task can suffer; the opposite is true for well-
performing fitness functions, as observed when the third layer
begins and trains with the aggregate sub-task. The dip in
performance indicates that the composition of layers may not
be ideal for this problem.

Finally, the jump in aggregate fitness between the second
and third layer shows Layered Learning’s robustness. Although
the aggregate fitness score suffers in the second layer, the
layered approach is able to quickly recover early in the third
layer. The robustness is caused by the fitness function
transitions inherent to Layered Learning; in this composition of
sub-tasks, the layered approach moves to a fitness function that
performs the overall task well to third layer. The robustness is
also attributed to the layered approach's ability to retain
information from past layers. This ability to call on knowledge
learned in previous layers permits the approach to quickly
revert unnecessary changes made in the game duration layer
and use helpful knowledge obtained from the first two layers
during the aggregate sub-task.

The learning phase demonstrates that this approach of
Layered Learning produces a team of NPCs that performs as
well as two of the monolithic approaches (captures and
aggregate) and outperforms the monolithic game duration
approach on average during learning. Although Layered
Learning produces the best aggregate scoring team at the end of
the learning phase, the averages for the top performing
monolithic approaches are within Layered Learning's 95%
confidence interval. In addition, the learning phase results
demonstrate how adaptable and robust Layered Learning is at
learning a task by being able to overcome sub-optimal task
decomposition and produce the best performing aggregate
results on average.

As the learning phase concentrated on comparing the
different approaches by examining performance averages, the
evaluation portion is concerned with answering the question of
which approach produces the best team of NPCs. From
evaluation, the Layered Learning method's best individual
produced a ghost team that was capable of capturing Pac-Man
161 out of the 200 attempts and in an average 90.59 (standard
deviation 87) time-steps. With both metrics, the Layered
Learning method produced an aggregated score of 50.9146.
The aggregate approach produced an 86% capture rate with
172 captures (std. 0.35), and an average of 84.22 (std. 67.49)
time-steps per game. The monolithic method with the capture
Pac-Man sub-task produced 163 (std. 0.39) captures and an
average game duration of 107.76 (std. 146.42). The monolithic
method based on minimizing game duration captured Pac-Man
85% of the time (std. 0.36) in the 200 evaluation games and
required 75.03 (std. 53.69) time-steps to do so on average.
Tables 3 and 4 display the evaluation phase results of the 200
games for each of the methods.

The main observation is how the Layered Learning method
performed compared to the aggregate methods. To make this
comparison, T- and Z-tests were made to see if there is any

significant difference between the averages of the best
performing teams generated between the different approaches.
Although Z-tests show that there is no significant difference
between any of the monolithic and layered learning approaches
for the captures metric, the best performing Layered Learning
team produced the least amount of captures and the third best
averaged game duration. T-tests show there are no significant
differences between the layered and the monolithic aggregate
and captures approaches for minimizing game duration. While
the comparison between Layered Learning and the monolithic
game duration approach is quite close, once the critical values
are adjusted via the Holm-Bonferoni correction for 3-way
comparison, there’s no significant difference here, as well.
Lastly, there are no significant differences in means between
the capture rates of Layered Learning and any of the monolithic
methods. P-values from the T- and Z-tests can be found on
Table 5. In the aim of comparing average outputs of the
monolithic and the proposed layered approaches, the
conclusion of which method outperforms the other cannot be
definitively made.

TABLE 3. EVALUATION RESULTS OF THE BEST PERFORMING MONOLITHIC
CAPTURES AND GAME DURATION GAS TEAMS

Sub-task Captures Sub-task Duration
Captures Duration Captures Duration

Sum 163 21552 169 15006

Average 0.82 107.76 0.85 75.03

Std Dev 0.39 146.42 0.36 53.69

TABLE 4. EVALUATION RESULTS FROM THE BEST PERFORMING MONOLITHIC

AGGREGATE GA AND LAYERED LEARNING TEAMS

Sub-task Aggregate Layered Learning
Captures Duration Captures Duration

Sum 172 16843 161 18118

Average 0.86 84.22 0.81 90.59

Std Dev 0.35 67.49 0.4 87

TABLE 5. P-VALUES FROM T- AND Z-TEST RESULTS COMPARING LAYERED

LEARNING TO EACH MONOLITHIC METHOD

Method Comparison
Captures
(Z-Test)

Duration
(T-Test)

Layered Learning- Mono. Aggregate 0.0704 0.4134

Layered Learning- Mono. Duration 0.1462 0.0321

Layered Learning- Mono. Captures 0.3994 0.1549

The evaluation phase results show that the monolithic game
duration approach produced the best aggregated fit team. At
first glance, this conclusion seems contradictory to what was
found in the learning phase. However, the evaluation phase is
concerned with examining the upper tails of the distributions of
the 4 approaches and not the averages. In both phases,
monolithic game duration produced the best aggregate
performing team, although the average team produced with this
method was the most underperforming with the highest
variance among the approaches. Table 2 helps explain how the
monolithic game duration approach produced an outlier that

excelled in the aggregate evaluation by listing the aggregate
score of the best produced team for each approach. As a result
of the learning phase, 95% of teams produced with the game
duration method hovered around the average aggregate score of
53.47.

The experiments generated results that justify the use of
Layered Learning to evolve a team of NPC agents. The layered
approach performs statistically as well as monolithic methods
under the same conditions and with the same metrics collected.
During the learning phase, the Layered Learning method
outperformed the monolithic approaches by producing the
highest average aggregation score. It should be noted that the
top 2 monolithic approaches of captures and aggregation
produced averages that fall within range of Layered Learning’s
aggregate 95% confidence interval. The evaluation phase
deemed the monolithic game duration approach to be the top
performing. Although the best team is considered an outlier,
the outcome is interesting as the approach generated the worst
performing average aggregate score among the approaches at
the end of the learning phase. From these experiments, one can
conclude that Layered Learning has demonstrated that it is an
effective alternative to the standard monolithic approach of
evolving decision making.

VI. CONCLUSION
The work presented here produces an effective team of

heterogeneous agents who can perform a shared, complex task.
To accomplish this feat, Layered Learning with a Genetic
Algorithm was used to decompose a complex task into simpler
components and train an agent team how to perform each sub-
task. The proposed method decomposed the shared task into 3
layers: 1) perform the task effectively; 2) perform the task
efficiently; 3) perform the task effectively and efficiently. The
final layer aggregates the sub-tasks of the first 2 layers and
represents the overall task to learn.

To evaluate the performance of the proposed layered
method, a team of video game NPCs was evolved to learn how
to excel in a predator-prey scenario. Pac-Clone, a Pac-Man
inspired game was used to set the environment, roles, and
constraints of the agents. The implementation saw a team of
NPC ghosts locate and capture Pac-Man with a high probability
and in a relatively small amount of time. The results are
interpreted that Layered Learning performs statistically as well
as the standard monolithic GA method to evolve the decision
making of computer-based agents. The results are significant
because conflicting literature exists differing on the
performance of the layered-based approach.

This work also shows that Layered Learning has benefits to
being deployed over monolithic GAs. First, the technique
provides a natural way of teaching a complex task by
decomposing it into simpler sub-components. Second, Layered
Learning creates an organized approach of instruction through
phases of simple sub-tasks to learn. Third, decomposing a task
into 3 sub-tasks that progressively makes the agent team
effective and efficient is proven to be a valid layering
technique. Finally, Layered Learning is shown to be a robust
method of learning. The robustness is demonstrated by the
technique’s ability to overcome underperforming layers and
retain acquired knowledge from well-performing ones. Future
work will examine the role of adequately decomposing the task
into layers, study how certain tasks should be decomposed, and
the effects varying task decompositions will have on
performance. In summary, the experiments showed that the
proposed Layered Learning method produces a team of
heterogeneous NPCs that performs similarly effective to those
evolved with a monolithic approach but the layered technique
stands out as it has several key benefits of being deployed.

REFERENCES
[1] D. Jackson and A. P. Gibbons, “Layered Learning in Boolean GP

Problems,” in Proc. 10th European Conference on Genetic
Programming, Valencia, Spain, 2007, pp 148-159.

[2] P. Fidelman and P. Stone, “ The Chin Pinch: A Case Study in Skill
Learning on a Legged Robot,” in Gerhard Lakemeyer, Elizabeth Sklar,
Domenico Sorenti, and Tomoichi Takahashi, editors, RoboCup-2006:
Robot Soccer World Cup X, Berlin, Germany, 2007, pp. 59-71.

[3] P. Stone and M. Veloso, “A Layered Approach to Learning Client
Behaviors in the RoboCup Soccer Server,” Applied Artificial
Intelligence, vol. 12, pp. 165-188, 1998.

[4] P. Stone and M. Veloso, “Layered Learning,” in Proc. 11th European
Conference on Machine Learning, Barcelona, Spain, May/June 2000, pp.
369-381.

[5] F. Gomez and R. Miikkulainen. “Incremental Evolution of Complex
General Behavior,” Adaptive Behavior, vol. 5, 1997, pp 317-342.

[6] S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone, “Evolving
Keepaway Soccer Players through Task Decomposition,” Machine
Learning, vol. 59, pp. 5-30, 2005.

[7] S. M. Gustafson and W. H. Hsu, “Layered Learning in Genetic
Programming for a Cooperative Robot Soccer Problem,” in Proc.
European Conference on Genetic Programming, 2001, pp. 291-301.

[8] W. H. Hsu and S. M. Gustafson. “Genetic Programming for Layered
Learning of Multi-agent Tasks”. In Late-Breaking Papers of the Genetic
and Evolutionary Computation Conference, San Francisco, USA. 2001.

[9] T. Iwatani, Pac-Man, Namco Limited, Tokyo, Japan, 1980.
[10] J. Pittman, (2009, February 23). The Pac-Man Dossier. [Online].

Available:
http://www.gamasutra.com/view/feature/3938/the_pacman_dossier.php

