
Bridging the Gap Between Theory and Practice

Thomas Jansen1 and R. Paul Wiegand2,⋆

1 FB Informatik, LS 2, Universität Dortmund, Germany,Thomas.Jansen@udo.edu
2 Department of Computer Science, George Mason University, Fairfax, VA 22030, USA

paul@tesseract.org

Abstract. While the gap between theory and practice is slowly closing,the evo-
lutionary computation community needs to concentrate moreheavily on the mid-
dle ground. This paper defends the position that contemporary analytical tools
facilitate such a concentration. Empirical research can beimproved by consid-
ering modern analytical techniques in experimental design. In addition, formal
analytical extensions of empirical works are possible. We justify our position by
way of a constructive example: we consider a recent empirically-based research
paper and extend it using modern techniques of asymptotic analysis of run time
performance of the algorithms and problems investigated inthat paper. The re-
sult is a more general understanding of the performance of these algorithms for
any size of input, as well as a better understanding of the underlying reasons for
some of the previous results. Moreover, our example points out how important it
is that empirical researchers motivate their parameter choices more clearly. We
believe that providing theorists with empirical studies that are well-suited for for-
mal analysis will help bridge the gap between theory and practice, benefitting the
empiricist, the theorist, and the community at large.

1 Introduction

Historically, research in evolutionary computation (EC) has been replete with innova-
tive refinements and augmentations to evolutionary algorithms. Analysis of improved
evolutionary algorithms (EAs) has been sparse and primarily confined to empirical
methods. There is a wide gap between EC theory and practice. Practitioners accuse the-
orists of analyzing simple algorithms and simple problems,impractical for real use and
describing very little of value for real applications. Theorists are frustrated by seem-
ingly arbitrarily engineered and poorly motivated algorithms that are difficult, if not
impossible to analyze thoroughly.

Fortunately, the gap between these two sides can be made smaller. To bridge it,
more attention on the middle ground between theoreticians and engineers is required.
We need empiricists who are driven and guided by theory to understand the perfor-
mance of these algorithms at a more fundamental level. As theorists strive to provide
more advanced and applicable analytical methods, empiricists should strive to develop
experimental frameworks that provide a more fertile groundfor future theoretical devel-
opment, motivate their algorithmic and problem choices more carefully and thoroughly,
and make use of existing theoretical results to guide and inform their research.

One way to bridge the gap is to extend empirical analysis withtheoretical results.
Though experimental analysis can be carried out for any EA onalmost any problem,

⋆ R. Paul Wiegand currently holds a postdoctoral position with the American Society for Engi-
neering Education and conducts research at the Naval Research Laboratory.



only a limited number of parameter settings can be considered. This makes it impos-
sible to say how the performance of the algorithm scales withthe size of the problem
beyond the experiments actually carried out. Extending empirical research with theo-
retical analysis can help fill in these gaps, and provide a much stronger grasp of the
“how’s” and “why’s” of EA performance.

Recent advances in asymptotic analyses of evolutionary algorithms has made the
idea of bridging the theory-practice gap more feasible. Droste, Jansen, and Wegener [1]
presented various analytical tools developed for the extremely simple (1+1) EA, a kind
of randomized mutation hill-climber. Some of these methodscan be extended to the use
of a larger offspring population size [3]. There are also results for mutation-based evo-
lutionary algorithms with a population sizeµ > 1 [2, 4, 14]. Witt [15] even presented
a method for proving lower bounds on the expected optimization time, which is often
much harder. Additionally, though EAs using crossover are considerably more difficult
to analyze [11], results on the expected running time are known for some steady-state
GAs [5, 6, 12]. These results are encouraging, though admittedly contain only upper
bounds; there are currently no known methods for proving lower bounds on the ex-
pected optimization time of EAs with crossover.

This paper states a firm position: not only can theory be useful for practical research,
but well-designed empirical studies can both make use of theoretical results, and be
extended by theoretical research. We justify this positionusing a constructive example
taken directly from recent literature. We consider an empirical paper by Wiegand, Liles,
and De Jong [13] that concentrates on the performance of a particular design aspect of
a specific cooperative coevolutionary algorithm (CCEA). Weprovide theoretical results
for the expected optimization time of this real algorithm. Our analysis is incomplete
in the sense that we do not consider every experiment discussed in [13]; however, we
are able to provide a surprising amount of information with contemporary analytical
techniques. This shows how experimental results can be validated and generalized for
larger search spaces. More generally, we uncover some interesting difficulties that are
based on the specifics of empirical research and suggest changes in the presentation of
empirical studies that eases the continuation of empiricalresearch by theoretical studies.

2 An Empirical Analysis of Cooperative Coevolution

A common extension to evolutionary algorithms are coevolutionary algorithms in which
fitness is a function of interactions between individuals. One common subset of such al-
gorithms are so-called “cooperative” coevolutionary algorithms, where individuals col-
laborate to form complete solutions that are mutually beneficial. A very general frame-
work for applying cooperative coevolutionary algorithms to many types of optimization
problems was provided by Potter and De Jong [10]. In this framework there are multiple
populations, representing problem components, and each population is evolved more or
less independently with the exception of evaluation. The framework is appealing since
it places no demands on the underlying EAs that are used for each population, nor on
any particular kind of representation.

During evaluation, representatives (so called collaborators) from the collaborating
populations must be selected to form complete solutions in order to obtain fitness. How



these collaborators are chosen, and what problem properties affect this choice is a chal-
lenging issue. It has lead to a variety of work, almost all of which has been purely
empirical in nature. Two representative such works are workby Bull [16] and Wiegand,
Liles and De Jong [13]. We consider the latter, more recent empirical research for our
example. Before we can begin, we will need to define the problems under study, as well
as the specific CCEA researched.

2.1 Problem Domains for Analysis

Wiegand, Liles, and De Jong [13] consider three maximization problems in their anal-
ysis. These problems can be desribed by pseudo-Boolean functions that map bit strings
of lengthn map to real numbers,f : {0, 1}n → IR. All three functions are based on
the well-known LEADINGONES and ONEMAX problems, investigating the influence
of decomposition of the bit string on collaboration. We consider exactly the same three
functions, though use a different notation that fits better within the framework of asymp-
totic analysis. The relation to the original notation from [13] is made explicit.

Definition 1. For n′ ∈ IN let n = 4n′. The functionf1: {0, 1}n → IR is defined by

f1(x) :=





n/2
∑

i=1

i
∏

j=1

xj



 +





n
∑

i=(n/2)+1

i
∏

j=1

xj



 .

The functionf2: {0, 1}n → IR is defined byf2(x) := n · f1(x) − ONEMAX(x). The
functionf3: {0, 1}n → IR is defined by

f3(x) := n ·









n/4
∑

i=1

i
∏

j=1

x2j−1x2j



 +





n/2
∑

i=(n/4)+1

i
∏

j=1

x2j−1x2j







−ONEMAX(x).

In [13] f1 is called concatenated LEADINGONES. It can be described as
LEADINGONES(x1 · · ·xn/2) + LEADINGONES(x(n/2)+1 · · ·xn). The functionf2 is
called LEADINGONES − ONEMAX . The definition off3 corrects a misprint in [13]
and is in accordance with the function used for experiments there. It is identical to the
function CLOB2,2 from [9].

2.2 A Cooperative Coevolutionary Algorithm

Wiegand, Liles, and De Jong [13] present an instantiation that uses steady-state GAs
with rank-based selection, replacement of the worst, standard bit-flip mutation, and
parameterized uniform crossover. In the coevolutionary framework, the strings are par-
titioned into components and each population is assigned the task of representing one
such component. This suggests two choices: how many components (populations) will
be used, and how will the bit string (x = x1x2 · · ·xn ∈ {0, 1}n) be decomposed among
these? We use the notationk to denote the number of components (the previous study
usedp), andl to denote the length of a component. The pseudo-Boolean nature of the
fitness functions suggests some obvious decompositions, but without intimate knowl-
edge of the function itself engineers cannot know the most appropriate decomposition
a priori. Two decompositions explored by the previous study are defined below.



Definition 2. Let l, k ∈ IN, n = lk be given. A bit stringx = x1x2 · · ·xn ∈ {0, 1}n is
divided intok componentsx(1), x(2), . . . , x(k) of equal lengthl = n/k. Regardless of
the specific decomposition we writex(1)x(2) · · ·x(k) to denote the complete bit stringx
in its original bit ordering.

We call this adirect decompositionif x(i) = x(i−1)l+1x(i−1)l+2 · · ·xil holds for all
i ∈ {1, . . . , k}. We call this adistributed decompositionif x(i) = xixi+k · · ·xi+(l−1)k

holds for alli ∈ {1, . . . , k}.

More precisely, we always consider the case of a direct or distributed decomposition
of x into k components. There arek identical EAs, each operating on one component
x(i). The initial population is chosen uniformly at random. The main algorithm is work-
ing in rounds, where in each round each of thesek EAs is active once, i. e., each does
one generation. The ordering is alwaysx(1), x(2), . . . ,x(k). We consider the algorithm
without stopping criterion and are interested in the first point of time when some com-
plete bit stringx is optimal under the fitness functionf . This point is subtle: An optimal
bit string may be constructible from the components in thek populations. However, we
ask more: We require the CCEA to realize this by actually assembling such an optimal
bit string for a function evaluation. We call the total number of function evaluations at
this point of time the optimization timeT and derive upper bounds on E(T ).

The steady-state GA used as underlying search heuristic in [13] has population size
µ. In each generation, first two parents are selected according to the same probability
distribution. Selection is done rank-based: the individuals are sorted with respect to
increasing fitness values and the position within this sorted list becomes the rank. For
each individual, the probability to be selected is proportional to its rank. With some
probability pc we apply parameterized uniform crossover with probability0.2. If no
crossover is performed, we copy the first parent to the offspring. In any case, standard
bit-flip mutation with mutation probability1/l is applied. Finally, randomly one of the
individuals of the current population with minimal fitness is replaced by the offspring.

We assign a fitness value to some componentx(i) in the following way. We select
one member of the population from each EA. This can be either done uniformly at
random from the whole population (b = 0) or uniformly at random from the individuals
with maximal fitness (b = 1). We then assemble the complete bit string and compute the
fitness value. After doing this forc times, the maximum value of the objective function
values obtained is assigned as fitness to the component at hand.

We denote one such GA as GA(µ, pc, c, b). For b we consider both values0 and1.
Like [13] we studyc ∈ {1, 2, 3}. For the crossover probabilitypc, we are interested in
the casespc = 1 (as used in [13]) andpc ∈ [ε; 1− ε], where0 < ε ≤ 1/2 is a constant.
We do not fix a certain value forµ, but do our analyses for arbitrary population sizes.
The reason for this is discussed below.

2.3 Poorly Motivated Empirical Choices

Empirical researchers have a variety of reasons for selecting parameter values. These
include experience and intuition, but also include underlying demonstrative reasons.
Unfortunately, when researchers do not state their reasoning further analysis can be-
come difficult. The choice forµ in [13] is exactly such a parameter.



The previous study uses a constantµ = 10, regardless ofn andk. In that case, they
fix n = 128 as a constant, but we are now interested in generalizing their results by
looking at the asymptotic behavior of the expected optimization time E(T ) for growing
n. We might speculate that perhapsµ =

√
n is close to the value intended; but with

different values ofk (k ∈ {2, 4, 8, 16} being used in [13]) one may argue that even
µ = l would be plausible. Regardless, it is doubtful that choosing µ independent of
n, i. e. µ = O(1), would be appropriate in our asymptotic setting. We avoid this by
choosing not to restrict the size ofµ.

Ideally, an extension such as ours should get information directly from the empirical
study, but this is not always possible. Since any empirical study is necessarily restricted
to a limited number of concrete parameter settings, it is tempting just to report the
actual settings used. However, it is reasonable to expect some justification for these.
The example ofµ here makes it clear that more is needed in order to support further
theoretical research: some functional correlation between the different parameters of
the algorithmic system is required of the empiricist.

3 Theoretical Analyses of the CCEA

It is helpful to know something about the performance of the EA used as the underlying
search heuristic in our CCEA. Therefore, we consider GA(µ, pc, c, b) an “ordinary” GA
with no decomposition. We use the notation GA(µ, pc) since the values ofb andc are
only used when the GA is part of the CCEA and have no meaning here.

Theorem 1. Letε with 0 < ε ≤ 1/2 be some constant,pc ∈ [ε; 1−ε]. The expected op-
timization time of GA(µ, pc) onf1 andf2 isO(n2+µn lnn). The expected optimization
time of GA(µ, pc) onf3 is O(n3 + µn2 lnn).

Proof. We use a generalization of the method of fitness-based partitions [1]. Letb be
the fitness of the current best individual and letnb be the number of individuals with
that fitness. LetTi be the random variable denoting the number of function evaluations
until b increased its value fromi to at leasti + 1 for f1 or from at leastn · i to at least
n · (i + 1) for f2 (with i ∈ {0, 1, . . . , n− 1}). If there is never a current best individual
with fitnessi, we sayTi = 0. Obviously, E(T0) + E(T1) + · · · + E(Tn−1) is the
expected optimization time.

Forf1 andf2 we can use the same argument. We distinguish two cases with respect
to the population sizeµ. First, assumeµ < n/ lnn holds. As long asnb < µ holds,
nb can be increased if the GA selects a current best string as first parent (probability at
leastnb/µ), does no crossover (probability1−pc), and does not flip any bit (probability
(1 − 1/n)n). This happens with probability at least(nb/µ) · (1 − pc) · (1 − 1/n)n =
Ω(nb/µ). The expected waiting time for this event is bounded above byO(µ/nb). Of
course,nb can take any value from{1, . . . , µ} at most once. Thus, we haveO(µ ln µ) =
O(n) as upper bound on the expected waiting time until eithernb = µ, or b has been
increased. In the casenb = µ, we can increaseb be selecting any string, doing no
crossover and mutating exactly the left-most zero-bit. Such an event has probability
Ω(1/n). Altogether, this yields E(Ti) = O(n) for all i. We haveO(n2) as upper
bound on the expected optimization time in this case. Considering the caseµ ≥ n/ lnn,



we repeat the same arguments, waiting only untilnb ≥ n/ lnn holds. The expected
waiting time for this isO(µ lnn). Then the probability to increaseb is bounded below
by Ω((n/(µ lnn)) · (1/n)) = Ω(1/(µ lnn)). This implies E(Ti) = O(µ ln n) for all i,
and we haveO(µn ln n) as upper bound on the expected optimization time in this case.

Forf3 we can use the same arguments. We may need a mutation of two bits in order
to increaseb. This increases all time bounds by a factor ofn. ⊓⊔

There is no asymptotic difference in the upper bounds forf1 andf2. We do not
have lower bounds on E(T ) since there is currently no lower bound technique known
for EAs with crossover. We conjecture, however, that the similarities in the upper bound
proofs reflect some common problem structure. In particular, we believe thatf2 will be
slightly harder to optimize thanf1. Observe that forf1 the bits to the right of the left-
most zero-bit are all random [1]. Thus, we get about half of the bits “for free.” Therefore,
we speculate the observed optimization time forf2 will be a factor of 2 longer.

The proof of Theorem 1 concentrates on the generations without crossover. Due to
the steady-state replacement, generations with crossovercan do no harm. If we consider
GA(µ, 1), this proof technique cannot work, leading us to upper bounds that are larger
by the factorn2/3/ lnn. We do not claim that these upper bounds are sharp.

Theorem 2. The expected optimization time of GA(µ, 1) onf1 andf2 is
O(n2 + µn5/3). The expected optimization time of GA(µ, 1) onf3 is O(n3 + µn8/3).

Proof. We use the same proof technique as above. However, since we have to cope
with crossover here, we concentrate on different events. Observe that the result of
crossover of two bit strings withm1 andm2 bits set to 1 yields a bit string with at
leastmin{m1, m2} bits set to 1 with probabilityΩ(1). This motivates concentration on
the improvement of the worst members of the population. We estimate the time it takes
to increase the function value of up toµ worst members of the population by at least 1.
Doing this at mostn times leaves us with at least one optimal string in the population.
We can assume that non-worst individuals in the current population are improvements
from the set of worst members of a previous population.

We begin withf1 andf2. First, assumeµ ≤ n1/3 holds. If all members of the
population have the same number of leading ones, then we can increase this number
for one individual by first selecting two arbitrary parents and doing crossover. With
probabilityΩ(1) we are left with a bit string with a number of leading ones thatis at
least as large as its parents. Then flipping exactly the left-most bit with value 0 increases
the function value. Thus, such a generation has probabilityΩ(1/n) and the expected
waiting time isO(n). If we have at least one bit string with a larger function value
than the current worst, we can produce copies of this individual in the following way.
We select such a current best individual as two parents (withprobabilityΩ(1/µ2)) and
produce an offspring with a number of leadings ones that is not smaller via crossover
(with probabilityΩ(1)). Flipping no bit in mutation (with probabilityΩ(1)) leaves us
with an individual that has at least as many leading ones. Forf2 the function value may
be smaller but we do not care. On average, afterO(µ3) such generations the population
consists of individuals that have all the same number of leading ones, and we start over.
We have do this at mostn times, leading to an upper bound ofO(n2 +n ·µ3) = O(n2)
for the expected optimization time in this case. In the caseµ > n1/3 our proof is similar.



Now we increase the number of leading ones in current worst individualsµ/n1/3 times.
This increases the probability for copying one individual with a maximal number of
leading ones toΩ(1/n2/3), leading toO(n · (nµ)/n1/3 + n · µ · n2/3) = O(µn5/3).

For f3, the proofs work in the same way but concentrate on pairs of leading ones.
We distinguish the casesµ ≤ n2/3 andµ > n2/3. In the latter case we increase the
number of leading pairs of ones for a worst individualµ/n2/3 times. ⊓⊔

Concentrating on the worst members of the population leads to a larger upper bound
that can be proven. It is not at all clear that our pessimisticanalysis of the effects of
crossover is realistic; however, we use the results from Theorem 1 and Theorem 2 to
derive upper bounds on the expected optimization time of thecooperative coevolution-
ary algorithm and compare our findings with the empirical data from [13].

We begin the investigation for the caseb = 1, i. e., a current best member of a
population is selected as collaborator. This case is easierto analyze.

Theorem 3. Let l′ ≥ 1 andk > 1 be two integers,l := 2l′, n := l · k. We consider
f1, f2, and f3 on n bits with a direct decomposition intok components. Letε with
0 < ε ≤ 1/2 be a constant,pc ∈ [ε; 1 − ε], c ∈ {1, 2, 3}.

The expected optimization time of GA(µ, pc, c, 1) is O(n2 + µnk log l) on f1 and
f2. It is O(n2l + µn2 log l) onf3.

The expected optimization time of GA(µ, 1, c, 1) is O(n2 +µn2/l1/3) onf1 andf2.
It is O(n2l + µn2l2/3) onf3.

Proof. We start with the proof for GA(µ, pc, c, 1) on f1 andf2. We consider the algo-
rithm in rounds, where in each round each GA performs exactlyone generation. Due
to the steady-state selection it suffices to concentrate on improving steps for an upper
bound. After an initial phase withΘ(µk) function evaluations, in each GA at least one
sub-string that can currently be assembled into a string where it is part of the leading
ones is identified if it does exist in the population. Then we concentrate in each round
on a GA that contains a left-most 0 in such an assembled string. Since we haveb = 1,
the “correct” string is assembled in each round. We know fromTheorem 1 that on aver-
age afterO(l2 + µl log l) generations this string has become all ones. We can conclude
that on average afterO(kl2 + µkl log l) = O(nl + µn log l) function evaluations this
happens. This happens with probability very close to 1, and we have to wait fork GAs.
This yieldsO(n2 + µnk log l) as upper bound.

The proofs for the other statements can be done in the same way. ⊓⊔

Theorem 4. Let l′ ≥ 1 andk > 1 be two integers,l := 2l′, n := l · k. We consider
f1, f2, andf3 onn bits with a distributed decomposition intok components. Letε with
0 < ε ≤ 1/2 be a constant,pc ∈ [ε; 1 − ε], c ∈ {1, 2, 3}, b ∈ {0, 1}.

The expected optimization time of GA(µ, pc, c, 1) is O(n2 + µnk log l) on f1 and
f2. The GA(µ, pc, c, 1) has no finite expected optimization time onf3.

The expected optimization time of GA(µ, 1, c, 1) is O(n2 +µn2/l1/3) onf1 andf2.
The GA(µ, 1, c, 1) has no finite expected optimization time onf3.

Proof. Forf1 andf2, in the proof of Theorem 3 we concentrated on mutations of single
bits. With respect to these mutations, the kind of decomposition used has no effect. Thus
the same proofs are valid and the same upper bounds hold.



This is not true forf3. There mutations of two bits may be needed: If we have
12i00 . . . at some point of time, changing the(2i + 1)-th or (2i + 2)-th bit to 1 alone
will decrease the function value. Such an offspring will be inserted into the population.
However, it cannot have the best function value and therefore will not be selected in the
following generations as collaborator (since we haveb = 1). Since this is already true
after random initialization with positive probability, there is a non-zero probability that
the global optimum will never be reached. Thus there is no finite expected optimization
time. This holds regardless of the crossover probabilitypc. ⊓⊔

When the collaborators are chosen randomly (b = 0), the performance is more
difficult to analyze. We present much weaker upper bounds. Since we have no lower
bounds, this does not prove that choosing collaborators randomly is worse forf1, f2,
andf3. In fact, in some ways it is even better forf3.

Theorem 5. Let l′ ≥ 1 andk > 1 be two integers,l := 2l′, n := l · k. We consider
f1, f2, and f3 on n bits with a direct decomposition intok components. Letε with
0 < ε ≤ 1/2 be a constant,pc ∈ [ε; 1 − ε], c ∈ {1, 2, 3}.

The expected optimization time of GA(µ, pc, c, 0) is O(µk−1n2 + µknk log l) onf1

andf2. It is O(µk−1n2l + µkn2 log l) onf3.
The expected optimization time of GA(µ, 1, c, 0) is O(µk−1n2 + µkn2/l1/3) on f1

andf2. It is O(µk−1n2l + µkn2l2/3) onf3.

Proof. To yield useful information, function values that are computed must be based
on components carrying leading ones. Those are the best of their population and are
guaranteed to become collaborators forb = 1. With b = 0 they are only selected with
a small probability. We make a rough and pessimistic approximation by assuming that
in each component there is only one “good” collaborator chosen with probability1/µ.
This can be improved to almostc/µ. It introduces an additional factorµk−1 to the
expected waiting time. The bounds follow directly from Theorem 3. ⊓⊔

Theorem 6. Let l′ ≥ 1 andk > 1 be two integers,l := 2l′, n := l · k. We consider
f1, f2, andf3 onn bits with a distributed decomposition intok components. Letε with
0 < ε ≤ 1/2 be a constant,pc ∈ [ε; 1 − ε], c ∈ {1, 2, 3}, b ∈ {0, 1}.

The expected optimization time of GA(µ, pc, c, 0) is O(µk−1n2 + µknk log l) onf1

andf2. The expected optimization time of GA(µ, pc, c, 0) is O(µk−1n2l + µkn2 log l)
onf3. The expected optimization time of GA(µ, 1, c, 0) is O(µk−1n2 + µkn2/l1/3) on
f1 andf2 and it isO(µk−1n2l + µkn2l2/3) onf3.

Proof. The proof forf1 andf2 follow from the Theorem 4 proof in the same way as the
Theorem 5 proof follows from the Theorem 3 proof, except thatthings now change for
f3. As explained above, setting single bits of a pair to 1 decreases the fitness. However,
such strings are generated and inserted with a positive and not too small probability.
After doing so, a bit string with such a pair of ones may be assembled due to the random
choice of the collaborators. Then the increase in fitness is realized and the new pair of
ones is guaranteed to remain. However, the two “lucky one bitmutations” must occur
within a short time span. Otherwise, a component with a single one may be removed. We
model this by concentrating on the case that these two mutation of single bits happen in



a direct sequence. This has asymptotically the same probability as the joined mutation
of a pair. Thus we again obtain the bounds from Theorem 5. ⊓⊔

Our asymptotic results are obviously not strong enough to cover all aspects of the
research presented in [13], but the main observations are the same. Note that the lack
of lower bounds leaves room for speculations that the true asymptotic expected opti-
mization times may be different. But this is not supported bythe empirical data in [12].
Our asymptotic analysis suggests no performance difference betweenf1 andf2, and
we argue that the expected optimization time most likely differs by a factor of at most
2. This is confirmed by the experimental data from [13]. They saw no differences due
to the number of collaborators. This had to be expected sincethe number of collabora-
tors is restricted to a small constant. We conjecture that a number of collaborators that
grows withn will have an effect that is visible within our asymptotic framework. This
is supported by the data in [13]. Forf3 we can prove that with the distributed decom-
position andb = 1 the algorithms fail to locate the global optimum. However, for the
direct decomposition orb = 0 we can prove a polynomial upper bound on the expected
optimization time. This appears to contradict that findingsin [13], wheref3 seems to
be very hard in any case. However, the upper bounds on the expected optimization time
for f3 are significantly larger than forf1 andf2. We believe that given more time the
algorithms withb = 0 or using the direct decomposition would succeed onf3.

4 Conclusions

Analytical extensions to experimental studies are possible. The mathematical methods
for formal studies of algorithmic performance continue to improve so that increasingly
more realistic algorithms may be considered. Bridging the gap between theory and prac-
tice is more attainable now than ever, but some work on the middle ground is needed
by both theoreticians and empiricists. As theoretical workseeks to provide ever more
flexible analytical methods, experimental scientists should begin to use existing theo-
retical results to guide experimental design, and offer studies that facilitate analysis by
recognizing the current state of theory and motivating parameter values more clearly.

As a case in point, this paper presents an example of a theoretical extension of exist-
ing empirical study on the very same problems and algorithmsused in that study [13].
Our results not only validate those discovered by experimentation, but alsogeneralize
them for increased search space size. Moreover, the proofs provided here offer more
insights and help us understand why certain effects can be observed. The theoretical
results are less concrete than the experimental results, but together they offer a much
more comprehensive picture of the run time performance.

We encountered a number of difficulties when transferring the experimental setup
to our analytical framework. In an asymptotic analysis one investigates the expected
optimization time of an evolutionary algorithm for growingsearch space dimension.
Meaningful results can be obtained when parameters of the algorithm are expressed as
functions of the size of the search space, but like almost allempirical studies, this is not
done in [13]. This requires a careful interpretation of the chosen setup and translation
into such functions. High quality empirical research should clearly present justifications



for specific algorithm design choices and problem properties. They should be designed
as simply as possible, while still demonstrating their points effectively, and they should
consider existing theoretical results and methods while designing experiments. Only
then can the work between theory and practice truly begin.

Experimental results are intrinsically restricted to the problem sizes and parameter
settings that have been actually used. In order to come to results that allow meaningful
statements about the expected behavior for increasing problem sizes, a theoretical anal-
ysis is needed. Asymptotic analyses are most useful in this situation. They allow for
some simplifications during in the proof that makes the analysis tractable. But they still
deliver rigorously proven results without unproven assumptions or simplifications with
unknown consequences. Theoretical analysis can and shouldbecome an increasingly
important part of research in the field of evolutionary computation.

References

1. S. Droste, T. Jansen, I. Wegener (2002): On the analysis ofthe (1+1) evolutionary algorithm.
Theoretical Computer Science 276:51–81.

2. J. He, X. Yao (2002): From an individual to a population: ananalysis of the first hitting
time of population-based evolutionary algorithms. IEEE Trans. Evolutionary Computation
6(5):495-511.

3. T. Jansen, K. A. De Jong (2002): An analysis of the role of offspring population size in EAs.
Genetic and Evolutionary Computation Conf.(GECCO 2002), Morgan Kaufmann. 238–246.

4. T. Jansen, I. Wegener (2001): On the utility of populations. Genetic and Evolutionary Com-
putation Conf.(GECCO 2001), Morgan Kaufmann. 1034–1041.

5. T. Jansen, I. Wegener (2002): On the analysis of evolutionary algorithms — a proof that
crossover really can help. Algorithmica 34(1):47–66.

6. T. Jansen, I. Wegener (2004): Real royal road — where crossover provably is essential. To
appear in Discrete Applied Mathematics.

7. T. Jansen, R. P. Wiegand (2003): Exploring the explorative advantage of the cooperative
coevolutionary (1+1) EA.Genetic and Evolutionary Computation Conf.(GECCO 2003),
LNCS 2724, Springer. 310–321.

8. T. Jansen, R. P. Wiegand (2003): Sequential versus parallel cooperative coevolutionary (1+1)
EAs. InCongress on Evolutionary Computation(CEC 2003), IEEE Press. 30–37.

9. T. Jansen, R. P. Wiegand (2004): The cooperative coevolutionary (1+1) EA. Accepted for
Evolutionary Computation.

10. M. A. Potter, K. A. De Jong (1994): A cooperative coevolutionary approach to function opti-
mization.Parallel Problem Solving from Nature(PPSN III), LNCS 866, Springer. 249–257.

11. Y. Rabani, Y. Rabinovich, A. Sinclair (1998): A computational view of population genetics.
Random Structures and Algorithms 12(4):313–334.

12. T. Storch, I. Wegener (2003): Real royal road functions for constant population size.Genetic
and Evolutionary Computation Conf.(GECCO 2003), LNCS 2724, Springer. 1406–1417.

13. R. P. Wiegand, B. Liles, K. A. De Jong (2002): The effects of cross-population epistasis on
collaboration methods in cooperative coevolution.Parallel Problem Solving from Nature
(PPSN VII). LNCS 2439, Springer. 257–270.

14. C. Witt (2003): Population size vs. runtime of a simple EA. Congress on Evolutionary Com-
putation(CEC 2003), IEEE Press. 1996–2003.

15. C. Witt (2004): An analysis of the(µ+1) EA on simple pseudo-boolean functions. Accepted
for GECCO 2004.

16. L. Bull (1997): Evolutionary Computing in Multi-agent Environments: Partners.Int’l Conf.
on Genetic Algorithms(ICGA 1997), Morgan Kaufmann. 370–377.


