Bridging the Gap Between Theory and Practice

Thomas Jansérand R. Paul Wiegartd

1 FB Informatik, LS 2, Universitat Dortmund, GermaMhoras. Jansen@ido. edu
2 Department of Computer Science, George Mason Universiiyfa, VA 22030, USA
paul @esseract.org

Abstract. While the gap between theory and practice is slowly closting evo-

lutionary computation community needs to concentrate rheewily on the mid-

dle ground. This paper defends the position that contermpanaalytical tools

facilitate such a concentration. Empirical research camtproved by consid-
ering modern analytical techniques in experimental dedigraddition, formal

analytical extensions of empirical works are possible. Wiy our position by

way of a constructive example: we consider a recent emgliribased research
paper and extend it using modern techniques of asymptodlysia of run time

performance of the algorithms and problems investigatetiah paper. The re-
sult is a more general understanding of the performanceesktlalgorithms for
any size of input, as well as a better understanding of thenlyidg reasons for
some of the previous results. Moreover, our example poimtow important it

is that empirical researchers motivate their parameteiceeanore clearly. We
believe that providing theorists with empirical studieattare well-suited for for-
mal analysis will help bridge the gap between theory andtipedenefitting the
empiricist, the theorist, and the community at large.

1 Introduction

Historically, research in evolutionary computation (E@gtbeen replete with innova-
tive refinements and augmentations to evolutionary aligorét Analysis of improved
evolutionary algorithms (EAs) has been sparse and priynaghfined to empirical
methods. There is a wide gap between EC theory and practagtit®ners accuse the-
orists of analyzing simple algorithms and simple problemgyactical for real use and
describing very little of value for real applications. Thists are frustrated by seem-
ingly arbitrarily engineered and poorly motivated algomits that are difficult, if not
impossible to analyze thoroughly.

Fortunately, the gap between these two sides can be madtsrial bridge it,
more attention on the middle ground between theoreticiadseagineers is required.
We need empiricists who are driven and guided by theory teerstand the perfor-
mance of these algorithms at a more fundamental level. Aarifte strive to provide
more advanced and applicable analytical methods, emgiBishould strive to develop
experimental frameworks that provide a more fertile grofamduture theoretical devel-
opment, motivate their algorithmic and problem choicesewarefully and thoroughly,
and make use of existing theoretical results to guide aratrimtheir research.

One way to bridge the gap is to extend empirical analysis thigoretical results.
Though experimental analysis can be carried out for any EAlorost any problem,

* R. Paul Wiegand currently holds a postdoctoral positiom e American Society for Engi-
neering Education and conducts research at the Naval Rbdealooratory.

only a limited number of parameter settings can be consid@reis makes it impos-
sible to say how the performance of the algorithm scales thighsize of the problem
beyond the experiments actually carried out. Extendingieca research with theo-
retical analysis can help fill in these gaps, and provide atmstimnger grasp of the
“how’s” and “why’s” of EA performance.

Recent advances in asymptotic analyses of evolutionanrighgns has made the
idea of bridging the theory-practice gap more feasible sBraJansen, and Wegener [1]
presented various analytical tools developed for the mehg simple (1+1) EA, a kind
of randomized mutation hill-climber. Some of these mettaaisbe extended to the use
of a larger offspring population size [3]. There are alsaltssor mutation-based evo-
lutionary algorithms with a population size > 1 [2, 4, 14]. Witt [15] even presented
a method for proving lower bounds on the expected optinonaiime, which is often
much harder. Additionally, though EAs using crossover amesaerably more difficult
to analyze [11], results on the expected running time arevkrfor some steady-state
GAs [5,6,12]. These results are encouraging, though agldhjttcontain only upper
bounds; there are currently no known methods for provingelolbounds on the ex-
pected optimization time of EAs with crossover.

This paper states a firm position: not only can theory be ligafpractical research,
but well-designed empirical studies can both make use dafrétieal results, and be
extended by theoretical research. We justify this positising a constructive example
taken directly from recent literature. We consider an erogipaper by Wiegand, Liles,
and De Jong [13] that concentrates on the performance oftizydar design aspect of
a specific cooperative coevolutionary algorithm (CCEA). plfvide theoretical results
for the expected optimization time of this real algorithrmur@nalysis is incomplete
in the sense that we do not consider every experiment disdusq13]; however, we
are able to provide a surprising amount of information witimtemporary analytical
techniques. This shows how experimental results can bdatell and generalized for
larger search spaces. More generally, we uncover somedtiteg difficulties that are
based on the specifics of empirical research and suggegjehianthe presentation of
empirical studies that eases the continuation of empirgssarch by theoretical studies.

2 An Empirical Analysis of Cooperative Coevolution

A common extension to evolutionary algorithms are coevoh#ry algorithms in which
fitness is a function of interactions between individualse@ommon subset of such al-
gorithms are so-called “cooperative” coevolutionary aitons, where individuals col-
laborate to form complete solutions that are mutually berafiA very general frame-
work for applying cooperative coevolutionary algorithmasiany types of optimization
problems was provided by Potter and De Jong [10]. In this émaork there are multiple
populations, representing problem components, and eguiigi®n is evolved more or
less independently with the exception of evaluation. Thenfework is appealing since
it places no demands on the underlying EAs that are used &br gapulation, nor on
any particular kind of representation.

During evaluation, representatives (so called collalmwsatfrom the collaborating
populations must be selected to form complete solutionsdardo obtain fithess. How

these collaborators are chosen, and what problem propeftet this choice is a chal-
lenging issue. It has lead to a variety of work, almost all ¢fich has been purely
empirical in nature. Two representative such works are wegrBull [16] and Wiegand,
Liles and De Jong [13]. We consider the latter, more recemigcal research for our
example. Before we can begin, we will need to define the problender study, as well
as the specific CCEA researched.

2.1 Problem Domains for Analysis

Wiegand, Liles, and De Jong [13] consider three maximirgpimblems in their anal-
ysis. These problems can be desribed by pseudo-Booleatidnsthat map bit strings
of lengthn map to real numbers: {0,1}" — IR. All three functions are based on
the well-known LEADINGONES and ONEMAX problems, investigating the influence
of decomposition of the bit string on collaboration. We ddesexactly the same three
functions, though use a different notation that fits bettéhniwthe framework of asymp-
totic analysis. The relation to the original notation frob3] is made explicit.

Definition 1. Forn’ € IN letn = 4n’. The functionf;: {0,1}"™ — IR is defined by

n/2 4 n %
filz) = ZH% + Z H:z:j
i=1 j=1 i=(n/2)+1i=1

The functionfs: {0, 1} — IR is defined byfs(z) := n - f1(z) — ONEMAX (z). The
functionfs: {0,1}" — IR is defined by

n/4 n/2 i
fg(x) =n- Z Hl‘gj_lxgj + Z Hl‘gj_lxgj —ONEMAX(.%‘).
i=1 j=1 i=(n/4)+1 j=1

In [13] f1 is called concatenateddaDINGONES. It can be described as
LEADINGONES(z1 - - - 2y, /2) + LEADINGONES(Z(;,/2)41 - - - ¥). The functionfs is
called LEADINGONES — ONEMAX. The definition of f3 corrects a misprint in [13]
and is in accordance with the function used for experiméweet It is identical to the
function CLOB; , from [9].

2.2 A Cooperative Coevolutionary Algorithm

Wiegand, Liles, and De Jong [13] present an instantiatian tises steady-state GAs
with rank-based selection, replacement of the worst, stahdit-flip mutation, and
parameterized uniform crossover. In the coevolutionaagnwork, the strings are par-
titioned into components and each population is assignedbitk of representing one
such component. This suggests two choices: how many compofpopulations) will
be used, and how will the bit string & 125 - - - 2, € {0, 1}™) be decomposed among
these? We use the notatiérto denote the number of components (the previous study
usedp), and! to denote the length of a component. The pseudo-Booleanenatihe
fithess functions suggests some obvious decompositiohsyithout intimate knowl-
edge of the function itself engineers cannot know the mogtapiate decomposition
a priori. Two decompositions explored by the previous study are eéfioelow.

Definition 2. Letl, k € IN,n = Ik be given. A bit string: = z122 - - -z, € {0,1}"is
divided intok components ™™, z(?), ... z(®) of equal length = n/k. Regardless of
the specific decomposition we writ€") z(?) . . . z(¥) to denote the complete bit string
in its original bit ordering.

We call this adirect decompositioif =) = z(;_1y,412(;—1)1+2 - - - 5 holds for all
i € {1,...,k}. We call this adistributed decompositioifi 2 = z;z; 1k - - Zi - 1)1
holds foralli € {1,..., k}.

More precisely, we always consider the case of a direct tnilolised decomposition
of x into k components. There afeidentical EAs, each operating on one component
=), The initial population is chosen uniformly at random. Thaimalgorithm is work-
ing in rounds, where in each round each of the$eAs is active once, i. e., each does
one generation. The ordering is alway$), z(?, ..., z(*). We consider the algorithm
without stopping criterion and are interested in the firshpof time when some com-
plete bit stringr is optimal under the fitness functigh This point is subtle: An optimal
bit string may be constructible from the components inkip®pulations. However, we
ask more: We require the CCEA to realize this by actuallyrasdieg such an optimal
bit string for a function evaluation. We call the total numbéfunction evaluations at
this point of time the optimization tim& and derive upper bounds onE).

The steady-state GA used as underlying search heuristi@irhps population size
1. In each generation, first two parents are selected acgptdithe same probability
distribution. Selection is done rank-based: the individwae sorted with respect to
increasing fitness values and the position within this sblist becomes the rank. For
each individual, the probability to be selected is promordi to its rank. With some
probability p. we apply parameterized uniform crossover with probability. If no
crossover is performed, we copy the first parent to the affgpin any case, standard
bit-flip mutation with mutation probability /! is applied. Finally, randomly one of the
individuals of the current population with minimal fithesséplaced by the offspring.

We assign a fitness value to some compongéftin the following way. We select
one member of the population from each EA. This can be eitbee diniformly at
random from the whole populatioh & 0) or uniformly at random from the individuals
with maximal fitnessi = 1). We then assemble the complete bit string and compute the
fithess value. After doing this fartimes, the maximum value of the objective function
values obtained is assigned as fitness to the componentét han

We denote one such GA as GA p., ¢, b). Forb we consider both valugsand1.
Like [13] we studyc € {1, 2, 3}. For the crossover probabilify., we are interested in
the cases. = 1 (as used in [13]) and. € [¢;1 — ¢], where0 < ¢ < 1/2is a constant.
We do not fix a certain value fqr, but do our analyses for arbitrary population sizes.
The reason for this is discussed below.

2.3 Poorly Motivated Empirical Choices

Empirical researchers have a variety of reasons for safpgi@irameter values. These
include experience and intuition, but also include undedydemonstrative reasons.
Unfortunately, when researchers do not state their reagdoirther analysis can be-
come difficult. The choice for in [13] is exactly such a parameter.

The previous study uses a constant 10, regardless of. andk. In that case, they
fix n = 128 as a constant, but we are now interested in generalizing tbsults by
looking at the asymptotic behavior of the expected optitioretime E(T") for growing
n. We might speculate that perhaps= /n is close to the value intended; but with
different values ofc (¢ € {2,4,8,16} being used in [13]) one may argue that even
1 = [would be plausible. Regardless, it is doubtful that chaggirindependent of
n, i.e. p = O(1), would be appropriate in our asymptotic setting. We avoid by
choosing not to restrict the size pf

Ideally, an extension such as ours should get informatimetdy from the empirical
study, but this is not always possible. Since any empiritalysis necessarily restricted
to a limited number of concrete parameter settings, it isptérg just to report the
actual settings used. However, it is reasonable to expece gostification for these.
The example of: here makes it clear that more is needed in order to suppdhtefiur
theoretical research: some functional correlation betwbe different parameters of
the algorithmic system is required of the empiricist.

3 Theoretical Analyses of the CCEA

Itis helpful to know something about the performance of theused as the underlying
search heuristic in our CCEA. Therefore, we conside(@#A., ¢, b) an “ordinary” GA
with no decomposition. We use the notation (4p..) since the values df andc are
only used when the GA is part of the CCEA and have no meanirg her

Theorem 1. Lete with0 < ¢ < 1/2 be some constani, € [¢; 1 —¢]. The expected op-
timization time of GAy:, p.) on f1 and f» is O(n?+ un Inn). The expected optimization
time of GAy, p.) on f3is O(n3 + un?Inn).

Proof. We use a generalization of the method of fitness-basedipastifl]. Letb be
the fitness of the current best individual and#gtbe the number of individuals with
that fitness. LeT; be the random variable denoting the number of function extalos
until b increased its value fromto at least + 1 for f; or from at least: - 7 to at least
n-(i+ 1) for fo (withi € {0,1,...,n — 1}). If there is never a current best individual
with fitnessi, we sayT; = 0. Obviously, E(Ty) + E(T1) + --- + E(T,,—1) is the
expected optimization time.

For f; and f, we can use the same argument. We distinguish two cases wjthae
to the population sizg. First, assume: < n/Ilnn holds. As long asy, < p holds,
np can be increased if the GA selects a current best string apdirsnt (probability at
leastn; /1), does no crossover (probability- p.), and does not flip any bit (probability
(1 —1/n)™). This happens with probability at lea@t,/p) - (1 — p.) - (1 — 1/n)" =
2(np/). The expected waiting time for this event is bounded above@gy/n;). Of
coursen,;, can take any value frodl, ..., u} atmostonce. Thus, we ha@¥ . 1n 1) =
O(n) as upper bound on the expected waiting time until eithee= 4, or b has been
increased. In the case, = u, we can increasé be selecting any string, doing no
crossover and mutating exactly the left-most zero-bit.hSaic event has probability
2(1/n). Altogether, this yields ET;) = O(n) for all i. We haveO(n?) as upper
bound on the expected optimization time in this case. Censid the casg > n/Inn,

we repeat the same arguments, waiting only unfil> n/lnn holds. The expected

waiting time for this isO(u Inn). Then the probability to increageas bounded below

by 2((n/(plnn))-(1/n)) = 2(1/(plnn)). This implies HT;) = O(uInn) for all 4,

and we havé®(unInn) as upper bound on the expected optimization time in this.case
For f3 we can use the same arguments. We may need a mutation of snn bitder

to increasé. This increases all time bounds by a factonof a

There is no asymptotic difference in the upper boundsffoand f>. We do not
have lower bounds on &) since there is currently no lower bound technique known
for EAs with crossover. We conjecture, however, that thelanities in the upper bound
proofs reflect some common problem structure. In particularbelieve thaj, will be
slightly harder to optimize thaif,. Observe that foif; the bits to the right of the left-
most zero-bit are all random [1]. Thus, we get about half eftiits “for free.” Therefore,
we speculate the observed optimization time fipwill be a factor of 2 longer.

The proof of Theorem 1 concentrates on the generations utitrossover. Due to
the steady-state replacement, generations with crossameto no harm. If we consider
GA(u, 1), this proof technigque cannot work, leading us to upper beuhdt are larger
by the factom?/3/Inn. We do not claim that these upper bounds are sharp.

Theorem 2. The expected optimization time of GA1) on f; and f5 is
O(n? + un®/3). The expected optimization time of GA1) on f3 is O(n® 4 un®/3).

Proof. We use the same proof technique as above. However, since weethv@ope
with crossover here, we concentrate on different eventse®e that the result of
crossover of two bit strings witln; andms bits set to 1 yields a bit string with at
leastmin{mi, m2} bits set to 1 with probability2(1). This motivates concentration on
the improvement of the worst members of the population. ilemate the time it takes
to increase the function value of up ovorst members of the population by at least 1.
Doing this at mosth times leaves us with at least one optimal string in the pdjmula
We can assume that non-worst individuals in the current ladipn are improvements
from the set of worst members of a previous population.

We begin with f; and f,. First, assume: < nl/3 holds. If all members of the
population have the same number of leading ones, then wencagaise this number
for one individual by first selecting two arbitrary parentedadoing crossover. With
probability 2(1) we are left with a bit string with a number of leading ones tbait
least as large as its parents. Then flipping exactly thenbeft bit with value 0 increases
the function value. Thus, such a generation has probalsility/n) and the expected
waiting time isO(n). If we have at least one bit string with a larger function ealu
than the current worst, we can produce copies of this indalith the following way.
We select such a current best individual as two parents @wvitbability 2(1/42)) and
produce an offspring with a number of leadings ones that issntaller via crossover
(with probability £2(1)). Flipping no bit in mutation (with probability2(1)) leaves us
with an individual that has at least as many leading onesf#tire function value may
be smaller but we do not care. On average, abtgr?) such generations the population
consists of individuals that have all the same number ofitepoines, and we start over.
We have do this at mosttimes, leading to an upper bound@fn? +n - u3) = O(n?)
for the expected optimization time in this case. In the gasen'/3 our proofis similar.

Now we increase the number of leading ones in current wodstiotualsy./n'/? times.
This increases the probability for copying one individuathaa maximal number of
leading ones td2(1/n%/?), leading toO(n - (nu)/n/3 +n - - n?/3) = O(un®/3).

For f3, the proofs work in the same way but concentrate on pairsaafifgy ones.
We distinguish the casgs < n?/3 andy > n?/3. In the latter case we increase the
number of leading pairs of ones for a worst individugh?/? times. a

Concentrating on the worst members of the population leaddarger upper bound
that can be proven. It is not at all clear that our pessimatialysis of the effects of
crossover is realistic; however, we use the results fronofidra 1 and Theorem 2 to
derive upper bounds on the expected optimization time ofttoperative coevolution-
ary algorithm and compare our findings with the empiricabdedm [13].

We begin the investigation for the cabe= 1, i.e., a current best member of a
population is selected as collaborator. This case is e@s@ralyze.

Theorem 3. Let!’ > 1 andk > 1 be two integers] := 2I’, n := [- k. We consider
f1. f2, and f3 on n bits with a direct decomposition inte components. Let with
0 <e<1/2beaconstanty. € [g;1 —¢],c € {1,2,3}.

The expected optimization time of GAp,, ¢, 1) is O(n? + unklogl) on f; and
fo. Itis O(n?l + un?logl) on fs.

The expected optimization time of GAL, ¢, 1) is O(n? 4 un?/1'/3) on f; and f».
Itis O(n2l + un1?/3) on f3.

Proof. We start with the proof for GAu, p., ¢, 1) on f; and f,. We consider the algo-
rithm in rounds, where in each round each GA performs exagily generation. Due
to the steady-state selection it suffices to concentratenpnaving steps for an upper
bound. After an initial phase wit®(u.k) function evaluations, in each GA at least one
sub-string that can currently be assembled into a stringevités part of the leading
ones is identified if it does exist in the population. Then waaentrate in each round
on a GA that contains a left-most 0 in such an assembled s®inge we havé = 1,
the “correct” string is assembled in each round. We know fiidraorem 1 that on aver-
age afteiO(1% + ullog 1) generations this string has become all ones. We can conclude
that on average afted(ki? + ukllogl) = O(nl + pnlogl) function evaluations this
happens. This happens with probability very close to 1, aathawe to wait fok GAS.
This yieldsO(n? + unklogl) as upper bound.

The proofs for the other statements can be done in the same way a

Theorem 4. Let!’ > 1 andk > 1 be two integers] := 2I', n := [- k. We consider
f1, f2, and f3 onn bits with a distributed decomposition inkocomponents. Let with
0<e<1/2beaconstanty. € [s;1 —¢],c € {1,2,3},b € {0,1}.

The expected optimization time of GAp., ¢, 1) is O(n? + unklogl) on f; and
f2- The GAp, pe, ¢, 1) has no finite expected optimization time f3n

The expected optimization time of GAL, ¢, 1) is O(n? 4+ un?/1*/?) on f; and fs.
The GAp, 1, ¢, 1) has no finite expected optimization time fan

Proof. For f; andfs, in the proof of Theorem 3 we concentrated on mutations @fisin
bits. With respect to these mutations, the kind of decontjppsiised has no effect. Thus
the same proofs are valid and the same upper bounds hold.

This is not true forfs. There mutations of two bits may be needed: If we have
1200 at some point of time, changing tti@; + 1)-th or (2i + 2)-th bit to 1 alone
will decrease the function value. Such an offspring will bedrted into the population.
However, it cannot have the best function value and theeefdi not be selected in the
following generations as collaborator (since we have 1). Since this is already true
after random initialization with positive probability,ghe is a non-zero probability that
the global optimum will never be reached. Thus there is ntefiexpected optimization
time. This holds regardless of the crossover probahility a

When the collaborators are chosen randonaly=(0), the performance is more
difficult to analyze. We present much weaker upper boundgeSive have no lower
bounds, this does not prove that choosing collaboratororaty is worse forfi, f,
and f5. In fact, in some ways it is even better ffy.

Theorem 5. Let!’ > 1 andk > 1 be two integers] := 2I’, n := [- k. We consider
f1. f2, and f3 on n bits with a direct decomposition inte components. Let with
0 <e<1/2beaconstanty. € [g;1 —¢],c € {1,2,3}.

The expected optimization time of GAp,., ¢, 0) is O(*~'n? + p*nklogl) on f;
and fs. Itis O(u*~'n2l + pFn2logl) on f3.

The expected optimization time of GAL, ¢, 0) is O(u*~'n? + pFn?/1V/3) on f;
and fo. Itis O(u* =12l + p*n21%/3) on f;.

Proof. To yield useful information, function values that are corgaumust be based
on components carrying leading ones. Those are the beseifpibpulation and are
guaranteed to become collaboratorsifer 1. With b = 0 they are only selected with
a small probability. We make a rough and pessimistic appnakbn by assuming that
in each component there is only one “good” collaborator ehagith probabilityl / .
This can be improved to almosf . It introduces an additional facter*—! to the
expected waiting time. The bounds follow directly from Them 3. a

Theorem 6. Let!” > 1 andk > 1 be two integers] := 2I', n := [- k. We consider
f1, f2, and f3 onn bits with a distributed decomposition inkocomponents. Let with
0<e<1/2beaconstanty. € [g;1 —¢],c € {1,2,3},b € {0,1}.

The expected optimization time of GAp.., ¢, 0) is O(u*~'n? 4 *nklogl) on f;
and f,. The expected optimization time of GAp.., ¢, 0) is O(u*~n2l + pFn?logl)
on f3. The expected optimization time of GAL, ¢, 0) is O(u*~*n? + uFn2/1*/3) on
frandfo and itisO(p*~1n2l + pFn2i?/3) on fs.

Proof. The proof forf; andf; follow from the Theorem 4 proofin the same way as the
Theorem 5 proof follows from the Theorem 3 proof, except thatgs now change for
f3. As explained above, setting single bits of a pair to 1 desgghe fithess. However,
such strings are generated and inserted with a positive antba small probability.
After doing so, a bit string with such a pair of ones may bemssded due to the random
choice of the collaborators. Then the increase in fithessakaed and the new pair of
ones is guaranteed to remain. However, the two “lucky onenbilations” must occur
within a short time span. Otherwise, a component with a singe may be removed. We
model this by concentrating on the case that these two routafisingle bits happen in

a direct sequence. This has asymptotically the same piithats the joined mutation
of a pair. Thus we again obtain the bounds from Theorem 5. a0

Our asymptotic results are obviously not strong enough teicall aspects of the
research presented in [13], but the main observations arsaime. Note that the lack
of lower bounds leaves room for speculations that the tryempwotic expected opti-
mization times may be different. But this is not supportedi®/empirical data in [12].
Our asymptotic analysis suggests no performance differéetweenf; and f», and
we argue that the expected optimization time most likelfedsf by a factor of at most
2. This is confirmed by the experimental data from [13]. Thay ®0 differences due
to the number of collaborators. This had to be expected sireaumber of collabora-
tors is restricted to a small constant. We conjecture thatmaber of collaborators that
grows withn will have an effect that is visible within our asymptoticfin@work. This
is supported by the data in [13]. F¢s we can prove that with the distributed decom-
position andb = 1 the algorithms fail to locate the global optimum. However, the
direct decomposition dr = 0 we can prove a polynomial upper bound on the expected
optimization time. This appears to contradict that findiimgEL3], where f3 seems to
be very hard in any case. However, the upper bounds on thetedpeptimization time
for f3 are significantly larger than fof; and f,. We believe that given more time the
algorithms withb = 0 or using the direct decomposition would succeed@n

4 Conclusions

Analytical extensions to experimental studies are possitithe mathematical methods
for formal studies of algorithmic performance continuertgprove so that increasingly
more realistic algorithms may be considered. Bridging #yelgetween theory and prac-
tice is more attainable now than ever, but some work on theli@iground is needed

by both theoreticians and empiricists. As theoretical wawkks to provide ever more
flexible analytical methods, experimental scientists sthbegin to use existing theo-

retical results to guide experimental design, and offedisiithat facilitate analysis by

recognizing the current state of theory and motivating peter values more clearly.

As a case in point, this paper presents an example of a thesimttension of exist-
ing empirical study on the very same problems and algorithses! in that study [13].
Our results not only validate those discovered by experiatam, but alsagyeneralize
them for increased search space size. Moreover, the proofgdpd here offer more
insights and help us understand why certain effects can berebd. The theoretical
results are less concrete than the experimental resultsodpether they offer a much
more comprehensive picture of the run time performance.

We encountered a number of difficulties when transferrirggetkperimental setup
to our analytical framework. In an asymptotic analysis aneestigates the expected
optimization time of an evolutionary algorithm for growisgarch space dimension.
Meaningful results can be obtained when parameters of ogitim are expressed as
functions of the size of the search space, but like almostmafiirical studies, this is not
done in [13]. This requires a careful interpretation of thesen setup and translation
into such functions. High quality empirical research skaléarly present justifications

for specific algorithm design choices and problem properfidey should be designed
as simply as possible, while still demonstrating their poéffectively, and they should

consider existing theoretical results and methods whikgiéng experiments. Only

then can the work between theory and practice truly begin.

Experimental results are intrinsically restricted to thelpem sizes and parameter
settings that have been actually used. In order to come tittsébat allow meaningful
statements about the expected behavior for increasindganadizes, a theoretical anal-
ysis is needed. Asymptotic analyses are most useful in ituat®n. They allow for
some simplifications during in the proof that makes the asialyyactable. But they still
deliver rigorously proven results without unproven asstioms or simplifications with
unknown consequences. Theoretical analysis can and sheafiine an increasingly
important part of research in the field of evolutionary cotagion.

References

1. S.Droste, T. Jansen, |. Wegener (2002): On the analyliedfL+1) evolutionary algorithm.
Theoretical Computer Science 276:51-81.

2. J. He, X. Yao (2002): From an individual to a population: amalysis of the first hitting
time of population-based evolutionary algorithms. IEERAS. Evolutionary Computation
6(5):495-511.

3. T.Jansen, K. A. De Jong (2002): An analysis of the role fsjwing population size in EAs.
Genetic and Evolutionary Computation CofBECCO 2002, Morgan Kaufmann. 238-246.

4. T.Jansen, |. Wegener (2001): On the utility of populai@enetic and Evolutionary Com-
putation Conf(GECCO 200}, Morgan Kaufmann. 1034-1041.

5. T. Jansen, |. Wegener (2002): On the analysis of evolatioalgorithms — a proof that
crossover really can help. Algorithmica 34(1):47—66.

6. T. Jansen, |. Wegener (2004): Real royal road — where avesprovably is essential. To
appear in Discrete Applied Mathematics.

7. T. Jansen, R.P. Wiegand (2003): Exploring the explazativantage of the cooperative
coevolutionary (1+1) EAGenetic and Evolutionary Computation CogGECCO 2003,
LNCS 2724, Springer. 310-321.

8. T.Jansen, R. P. Wiegand (2003): Sequential versus @lacabiperative coevolutionary (1+1)
EAs. InCongress on Evolutionary Computati68 EC 2003, IEEE Press. 30-37.

9. T. Jansen, R.P. Wiegand (2004): The cooperative coévnary (1+1) EA. Accepted for
Evolutionary Computatian

10. M. A. Potter, K. A. De Jong (1994): A cooperative coeviaoary approach to function opti-
mization.Parallel Problem Solving from Natur@®PSN Ill), LNCS 866, Springer. 249-257.

11. Y. Rabani, Y. Rabinovich, A. Sinclair (1998): A compitagl view of population genetics.
Random Structures and Algorithms 12(4):313-334.

12. T. Storch, I. Wegener (2003): Real royal road functiamsbnstant population siz&enetic
and Evolutionary Computation CorlGECCO 2003, LNCS 2724, Springer. 1406-1417.

13. R.P. Wiegand, B. Liles, K. A. De Jong (2002): The effedtsross-population epistasis on
collaboration methods in cooperative coevoluti®arallel Problem Solving from Nature
(PPSN VI). LNCS 2439, Springer. 257-270.

14. C. Witt (2003): Population size vs. runtime of a simple. EAngress on Evolutionary Com-
putation(CEC 2003, IEEE Press. 1996—2003.

15. C. Witt (2004): An analysis of thg:+1) EA on simple pseudo-boolean functions. Accepted
for GECCO 2004.

16. L. Bull (1997): Evolutionary Computing in Multi-agenthiAronments: Partnergnt’l Conf.
on Genetic Algorithm§ICGA 1997, Morgan Kaufmann. 370-377.

