
An Architecture Supporting Large Scale MMOGs

Chandana Ghosh
Institute for Simulation &

Training
3100 Technology Pkwy

Orlando, FL 32826

cghosh@ist.ucf.edu

R. Paul Wiegand
Institute for Simulation &

Training
3100 Technology Pkwy

Orlando, FL 32826

wiegand@ist.ucf.edu

Brian Goldiez
Institute for Simulation &

Training
3100 Technology Pkwy

Orlando, FL 32826

bgoldiez@ist.ucf.edu

Troy Dere
RDECOM-STTC

12423 Research Pkwy
Orlando, Fl 32826

troy.dere@us.army.mil

ABSTRACT
The growing popularity of large-scale, highly interactive virtual

reality systems such as massively multiplayer online games

(MMOGs) necessitates highly robust and efficient architectures.

Distributed implementations are common, but they must deal

with challenges such as supporting very large numbers of

closely interacting users, the need to maintain robustness in the

face of hardware failure, balancing the processing load, reducing

user latency, and minimizing thrashing effects caused by

movement between servers. Although a number of existing

techniques address each of these independently, there are no

unified methods that attack these problems cohesively.

We present methods to simultaneously address these critical

challenges²a novel approach and associated software design

intended for distributed high performance computing facilities in

which the world is divided into a regular lattice of overlapping

cells (providing redundancy), which are dynamically assigned to

servers within the High Performance Computing (HPC)

(facilitating load balancing). We believe this architecture can

be applied to non-spatial cells. This architecture is currently

being implemented in a test bed for further experimentation.

Categories and Subject Descriptors
I.6.8 [Computing Methodologies]: Simulation and Modeling²

types of simulation

General Terms
Algorithms, Design, Performance

Keywords
Distributed Simulation, MMOG, Partitioning, Redundancy

1. INTRODUCTION
Large-scale, highly interactive virtual realities (VR) such as

those popularized by massively multiplayer online games

(MMOGs) permit growing numbers of interacting users to

become immersed in a shared, virtual world. Beyond games

meant purely for entertainment, expansion of these ideas into

serious game technology [1] presents unprecedented training

opportunities for the military [15] and emergency services

communities. One example is the ability to conduct large-scale

multi-team training, virtual training simulations of complex and

real-world scenarios involving a host of different personnel

working with different organizations with different specialized

goals (e.g., paramedics, firemen, police, and military personnel

in first response to some natural or manmade event). Finally, an

infrastructure supporting large-scale interactions between

heterogeneous users and equipment offers new opportunities and

paradigms for social networking [19].

Advances n communication and computational infrastructures

have led to increased sophistication of these digital virtual

environments (DVEs) and interactions within them²complexity

demanded by many applications such as the multi-team training

example just mentioned. Additionally, increased scale of user

interaction is of interest to entertainment [18] and commerce [3].

An expanded user base necessitates highly scalable and reliable

software, as well as hardware solutions capable of handling

smooth front-end and back-end execution. To achieve this, game

and virtual reality systems rely more and more on distributed

back-end solutions, where game and VR server responsibilities

are divided among a number of interconnected machines.

Distributed solutions introduce a number of difficulties, and four

key requirements of large-scale, distributed VR systems are:

 1. Robustness to hardware failure ± Distributed systems

should avoid single-point-of-failure problems where part of the

world state is lost with a server failure.

 2. Balancing of processing load ± Dynamic entity behaviors

demand responsive methods for shifting processor load to

conserve computational resources.

 3. Mitigation of thrashing ± Distributed systems should avoid

repeated inefficient transitions of objects between resources.

 4. Reduction of user latency ± Game systems must avoid

unacceptable latencies between the user clients and the servers.

Currently these requirements are addressed separately by a

number of technologies; however, our interest is in how these

four can be achieved by a single, cohesive solution. Our current

work has led to the development of a new software architecture

intended for use with distributed high performance computing

facilities. This architecture addresses these concerns by dividing

the world into overlapping cells (providing redundancy and

mitigating thrashing), which are dynamically assigned to servers

within an HPC (facilitating load balancing). The design provides

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

DISIO 2010, March 15, 2010, Torremolinos, Malaga, Spain.

Copyright 2010 ICST, ISBN 78-963-9799-87-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8731
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8731

seamlessness and continued connectivity. The HPC orientation

of our design does not yet consider external network issues.

This paper introduces a preliminary study and design of this

architecture. Our analysis considers the redundancy, load-

balancing and thrash-mitigation effects of certain geometric

variations in lattice structure, as well as how such variations

impact dynamic cell allocation. User latency is a vital concern

and addressed by our architecture; however, it is not the focus of

this paper. Additionally, we describe a spatial division of the

world, but our ideas can be extended to cases where cells are

organizational or social in nature. We conclude with

requirements for effective dynamic cell allocation algorithms

and suggest some plausible simple solutions.

2. RELATED WORK
Distributed MMOGs and other multi-server, large-scale VR

systems use a variety of methods to address the four desired

capabilities mentioned above. Multi-server solutions must first

address the question of how to divide server responsibilities,

which typically involves dividing users or other world

components among different machines. These choices lead to

different advantages and disadvantages.

The method of sharding [18] maintains separate instances of the

complete game world on different servers, where each server

supports different sets of users (e.g., as in World of Warcraft

[4]). This approach only partially addresses single-point-of-

failure issues since a server failure entirely destroys the game

experience for some users while leaving other users unaffected.

Load balancing and latency reduction techniques can be

addressed by effective allocation of users to servers. Users and

objects do not move between servers, so there are no back-end

thrashing effects caused by migrations between machines;

however, this disjunction comes at the cost of severe constraints

on the types and quantity of interactions that are possible.

Slightly more complex approaches are geographically

constrained partitioning and zoning methods, where the game

world is partitioned into geographically distinct cells, with each

cell assigned to a separate server (e.g., as in Second Life [12]).

Here, users can interact with any object or user, though

movement between cells requires migration between servers.

Migration raises several challenges, such as how to handle edge

effects at cell boundaries and how to balance server processing

loads and manage server-client latency problems. Simply relying

on user dispersal to address these issues is infeasible given

known traffic patterns in typical MMOGs [10, 5]. One solution

is to use avatar generated workloads to manage load balancing

[13], though balancing in this way means that serving requests

from each user requires reading objects from all servers.

Zoning can be approached less severely by partitioning the

world into small cells and assigning the cells to individual

servers [2, 14]. The aim is to address load balancing by

distributing equal number of users to the partitions while

simultaneously minimizing inter-partition costs, though cell

geometry and migration constraints differ among approaches.

Such solutions lack seamless migration across cells; however,

thrash mitigation can be approached by creating buffer regions

at cell boundaries and defining (different) check-in and check-

out edges to trigger shifts in server responsibilities [7, 8]. Still,

without redundancy such systems are not fault tolerant.

Alternatively, publisher-subscriber methods [17] relay messages

to users, and processing workload can be broken down into

tasks, each of which can be scheduled on any server (e.g., as

implemented within Project Darkstar [16]). Game objects can be

stored in a fully transactional database for synchronization and

consistency purposes. Unfortunately, this solution does not yet

scale well in multi-server settings [6]. Another method to

address scalability and single-point-of-failure is the well-known

Peer-to-Peer (P2P) paradigm [11]. In this design, some server

functions are distributed among clients enabling users to

communicate with each other without going through a server.

An example [9] puts forth a hybrid architecture that combines

ideas from P2P and zoning for increased scalability. Limitations

in authentication, security and persistence, make most P2P

impractical solutions for large-scale MMOGs.

We strike a balance between these approaches. In our zone-

based approach, users and objects can migrate throughout the

DVE. Even so, seamlessness and fault tolerance are achieved via

a natural redundancy mechanism enabled by overlapping cells.

3. AN OVERLAPPING, ZONE-BASED

ARCHITECTURE

We divide the virtual world into a lattice of small, overlapping

cells (zones)1. Cells can have different geometric shapes (e.g.,

square, hexagonal), and their pattern of overlap may differ to

form lattices with different types of connectivity. Cells must

completely tessellate the region of interest. The cell overlap

scheme serves three important functions in our architecture: it

provides a mechanism for redundancy to protect against server

crash, it facilitates a system for seamless migration across cell

boundaries, and it allows load balancing methods to control the

balance between reads and writes of object data among the

servers. Details follow.

Cells are pre-distributed amongst the servers for processing.

Updating responsibilities for each entity (object and user data in

the environment) are assigned to a cell based on the location of

the object in the world, and the server managing that cell can be

considered the master host of such objects. In addition, other

cells will have redundant, read-only copies of the entity, and

other servers managing such cells can be considered slave hosts

for the entity. Thus each server can be considered both a master

host for some entities and a slave host for other entities. There

are redundant copies for all entities, but only a single server is

permitted to write changes of the HQWLW\¶V�VWDWH�

This master-slave relationship is determined by the overlap:

cells may access local, cached slave-hosted copies of entities

when the entity resides in a region of overlap with another cell.

The system is not permitted to host all copies of a given entity

on a single server, which entails certain regional constraints for

server-cell assignment. These constraints differ based on cell

geometry, and some will be discussed in detail in the next

section. Figure 1 illustrates what we designate as a loose square

cell overlap pattern.

1
 While zoning is currently spatially oriented, we anticipate

extensions to non-spatial partitions, such as social or group

hierarchies

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8731
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8731

The simplest rule for cell-to-server assignments is described as

follows. In Figure 1, lattice constant a = 1, where, the lattice

constant of any layer of cells is defined as the distance between

the center of a cell and the center of its adjoining cell. Adjoined

cells are those that share any common edge entirely. Each cell

is divided into 4 quadrants, (11), (12), (21), (22). The cells in

both layers are strictly maintained to be of exactly the same

shape and dimension, while their spatial origin is set apart by a

distance ¿x = ½ . a and ¿y = ½ . a with respect to each other, to

generate the overlapping pattern. As can be seen in Fig. 1, any

cell from a particular layer is overlapped partially by 4 cells

from the overlapping layer, on its 4 quadrants respectively, thus,

acquiring 100% of total overlap. If Server1 serves as the master

to this cell, it acts as a slave to its 4 overlapping cells.

Update responsibilities of entities are transferred between

servers as those entities are repositioned throughout the world.

Such decisions are made by using the overlap region between

cells to define check-in and check-out boundaries for entities

moving between cells. We define an Area of Interest (AoI)

around an entity, and when that AoI LQWHUVHFWV�WKH�PDVWHU�FHOO¶V�

boundary, management of the entity is shifted. Figure 2 below

illustrates this idea with square cells.

The value of the AoI radii of all objects can either differ or be

the same. Experimentation will help determine optimum values

and optimum ratios between cell dimensions and AoI radii.

Seamless transition of objects between cells is made possible by

using the check-in and check-out boundaries, which determine

ZKHQ� D� VHUYHU� VKRXOG� EHJLQ� WR� DFW� DV� WKH� REMHFW¶V� PDVWHU��

However, the velocity of the object plays a crucial role in

providing smooth transition from one server to the other. This is

due to the requirement that the data update needs to be quicker

than the object velocity. If this is not true the radius of the AoI

must be increased by some (Fig. 2 (b)) to accommodate such

issues. The value of , and factors on which it depends, is

another area for experimentation.

4. ANALYSIS
Early prototypes of this architecture provide some encouraging

results. Additional analyses are found below.

4.1 Cell Graph Structures
We distinguish between cells that overlap and cells that

neighbor one another. Overlapping cells share some region of

coverage, while neighboring cells share an adjoining boundary.

For example, the tiles on a checkerboard neighbor one another;

however, if a new tile is placed on the point where four checkers

tiles meet, the new tile would overlap the four checkers tiles.

The partitioning of the world is determined by cell geometry,

cell size, and the overlap pattern of cells. We discuss only

divisions of square cells for this paper, though the concepts

generalize to other cell shapes (e.g., hexagons). Likewise, cells

may be overlapped in many ways, but we focus on two choices:

loose overlap and tight overlap. In Fig. 3, we see that for the

loose overlap, any region of the game world is shared by 2 cells

(shown by the hashed region), each belonging to a different

layer and different server. Whereas, for the tight overlap, any

region is shared by 4 cells each belonging to a different layer

and different server.

It is useful to visualize these structures in graph form. There are

two graphs: one for neighboring cells and one for overlapping

cells. We are primarily concerned with the latter, in which each

vertex in the graph represents a cell and edges between two

vertices indicate where the two corresponding cells overlap. We

can further refine this representation by including the server

assignment information as the color of a vertex. We call such

Check-in boundary for Cell A

Overlap Region

xxx
xxx
xxxCell A

Cell B

AoI

AoI

r

r +

Figure 2. (a) Check-in and Check-out boundaries in

overlapping cells, (b) Area of Interest with increment

Loose square overlap Tight square overlap

Cells of Layer 1

Cells of Layer 2

Cells of Layer 1

Cells of Layer 2

Cells of Layer 3

Cells of Layer 4

Figure 3. Example of loose and tight square overlap

xx

Figure 1. Loose Square Cell Overlap Pattern

x
Q

R

a = 1

Layer 1

Layer 2

Cells assigned to Server1 ± Server1 is master to object Q

and slave to object R

Cells assigned to Server2 ± Server2 is master to object R

and slave to object Q

(1 1) (1 2)

(2 1) (2 2)

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8731
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8731

graphs the cell allocation graph (CAG), Figure 4 below

illustrates loose and tight overlapping CAG examples. The

dotted squares show the portions of the CAG that correspond to

their equivalent representation using cells in Figure 3, for the

loose and tight overlaps respectively.

The ratio between the cell size and the size of the space

determines the resolution with which the system is capable of

load balancing, but it also impacts latency and redundancy.

When object AoIs are too large with respect to the cell

resolution, the radius of the AoI may span several cells, and the

system will either have to make remote calls rather than rely on

slave-hosted caches, or be configured with more sophisticated

overlap strategies that permit greater read access to object

information. When interaction regions are very small relative to

cell size, then overlap and redundancy strategies will be less

useful since objects within the cell will seldom interact with

objects in other cells. In practical applications, the interaction

region will vary between different objects and during execution.

A good general lower bound for cell size can be obtained given

an average size for the interaction region as follows. Consider

again Figure 2, above and a hypothetical case where the

diameter of the interaction region is precisely half the width of a

cell and the object is centered in the overlap region. If the object

moves slightly in the direction toward the overlapped cell, the

check-out boundary will be triggered, and it will be migrated. If

it then immediately backtracks, it will quickly trigger a

migration back. Thus, it is best if cell widths are larger than half

the diameter of the average AoI.

This design allows two ways for achieving load balancing. The

first being load distribution from a congested cell, served by a

server, to its overlapping cells, served by different servers. The

second is by using the Dynamic Cell Allocation Algorithm

(DCAA). Server load is measured as the number of dynamic

entity processes being handled in a given period of time.

However, load on a server can also be generated by other

processes, such as creating, acquiring and deleting entity

responsibilities. An appropriate metric to measure combined

load needs to be devised.

4.2 Entity Motion
As previously mentioned, entity velocity is an important

consideration trading off cell size and AoI. Below, a discussion

of entity dynamics and thrash mitigation methods is provided for

the simplest case of a loose square cell overlap pattern.

In the loose overlap each square cell in a layer is overlapped by

four other cells in the overlapping layer. For convenience of

description, let the type of cell filling indicate the server to

which they have been assigned, such as in Figure 5, Cell A

server Gray (layer 1), cells B and E server Stripes (layer 2)

and cells C and D server Dots (layer 2). The four quadrants

of cell A are labeled as (11), (12), (21) and (22).

For an object, z, in quadrant (12), either server Gray or server

Dots could be its master server. Figure 6 shows the different

stages of the object motion as it moves from quadrant (12) to

quadrant (11). For this scenario, it is preferable for the Gray

server to act as WKH� REMHFW¶V master. The four stages for the

entity motion appear below in Figure 6, followed by discussion.

 In stage (a), assume Gray to be the master and Dots to be the

slave server. Gray updates Dots on the movement of object z. In

stage (b), the AoI of z touches the border of cell B and C, and

slave copies of the object files have to be created in server

Stripes. Gray has to now update Dots as well as Stripes. In stage

(c), the AoI of z crosses the boundary of cell C, therefore Gray

keeps updating Dots and Stripes. In stage (d), the object is

entirely inside cell B, and Gray has to now update only Stripe.

The main contributing cost in this entire scenario, occurs in

stages (b) and (c), where, Total Cost = Cost of creating slave

copies of object in server Stripes + Cost of updating servers

Dots and Stripes by server Gray. A hysteresis type of design

could mitigate some of this cost and help minimize thrashing.

If the same scenario were to be considered, but with server Dots

being the master in stage (a) and server Gray being the slave

server, the contributing cost would again occur in stage (b),

xxx
xxx
xxx

xxx
xxx
xxxxxx
xxx
xxx

xxx
xxx
xxx

A

C

D E

(1 1) (1 2)

z

)

(2 1) (2 2)

B

Figure 5. Quadrants in the loose square cell overlap pattern

Figure 4. Cell Allocation Graphs for loose and

tight square cell partitioning

Figure 6. Motion of object across overlapping cells

(a)

xxx
xxx
xxx

xx
xx
xx

A

C

(1 1) (1 2)

z

B (b)

xx
xx
xx

xxx
xxx
xxx

A

C

(1 1) (1 2)

z

B

(c)

xxx
xxx
xxx

xx
xx
xx

A

C

(1 1) (1 2)
z

B (d)

xx
xx
xx

xxx
xxx
xxx

A

C

(1 1) (1 2)
z

B

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8731
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8731

where, Total Cost = Cost of creating master copies of the object

in server Stripes + Cost of updating servers Gray and Dots by

server Stripes. The only difference between these two

possibilities is the handover of master status from Dots to

Stripes in the second scenario as opposed to no master status

handover by server Gray in the first scenario. These are likely

insignificant in terms of Total Cost. However, once the object

touches the boundary between cells B and C and chooses to

oscillate across this boundary, in scenario 1 these oscillations

will be free of thrashing since server Gray is the master and the

object is entirely within cell A. Considering this situation,

scenario 1 is the more favorable option.

The above description is for entity motion in the horizontal

direction from quadrant (12) to quadrant (11). Extending this

idea for objects in motion in all three directions, a simple set of

rules can be formulated for the most favorable option that

minimizes total cost. This is summarized in Table 1.

Note that the above argument addresses object thrashing effects

when in motion across boundaries that are formed by edges of

neighboring cells of the same layer. However, when the object

motion is diagonal across the intersection point between one

horizontal and one vertical edge of the two different layers,

oscillatory motion in this direction, at these points, cannot be

free of thrashing unless any pair of the two neighboring cells of

either layer, those that share an edge at this intersection, are

assigned to the same server. There are 8 such cases that could

occur in the case of the loose square overlapping cells, as in

Figure 7. Similarly for the loose hexagonal overlap motif, a set

of rules can be formulated and 6 cases exist for which thrashing

is unavoidable unless the pair of neighboring cells in either layer

hosting this movement are assigned to the same server.

4.3 Server Crash
A natural fault tolerance is accomplished in our design because

of the redundancy provided by overlapping cells. When a server

crashes, any entities over which it had master control are already

replicated on at least one other server²the system must merely

transfer master control DQG� QHHGQ¶W� VHek data from a crashed

machine. A preliminary analysis of this follows.

Figure 8 is a simple visualization of cells allocated to various

servers and their mutual communication channels. Standard

For direction of motion of

object

Master server of object

should be that server which is

the master of the cell that

holds the object in quadrant

 (1 1)

(1 2)

(2 1)

(2 2)

Table 1: Favorable Server-Motion allocation for Cost

minimization

xx
xx
xx

xxx
xxx
xxx

C

)

D

)

A

)

B

)

(1 1) (1 2)

(2 1) (2 2)

(a)

Figure 8. (a) Cell Overlap Pattern, (b) A

Cell-to-Server allocation favorable for

crash handling

(b)

xxx
xxx
xxx

xx
xx
xx

xx
xx
xx

Layer 1

Layer 2

Server

Gray

Server

Light Gray

Server

Dark Gray

Server

Stripes

Server

Dots

Server

Zigzag

C
D

A
B

(a)

(b)

Figure 7. Object motion subject to thrashing for neighboring

cells assigned to different servers in (a) a loose square overlap

pattern and in (b) a loose hexagonal overlap pattern

xx
xx
xxxx
xx
xx

xxx
xxx
xxxxxx
xxx
xxx

xxx
xxxxxx
xxx

xxx
xxx
xxx
xx
xx

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8731
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8731

message passing interfaces can handle communication between

servers for transfer of object data permissions, update

notifications, etc.

In the cell overlap pattern in Figure 8(a), cells C and D are being

overlapped by cells A and B. Figure 8(b) shows the

corresponding diagram of the server farm with cell allocations,

which illustrates communication between the respective servers.

In the event that server Light Gray crashes, cell B (which

overlaps cells C and D in quadrants (11) and (12)) gets stranded.

Server Gray, which acts as master to cell A (and also overlaps

cells C and D but in different quadrants (21) and (22)) could

serve as master to cell B. Provided that server Gray has

allowable load levels, this might be the most efficient

assignment, considering that server Gray already has an open

channel of communication between itself and servers Stripes and

Dots (because Cell A overlaps cells C and D). Thus, in the

above scenario, any server that meets the criteria of the cell

allocation problem discussed in section 4.4 can be called to act

as master to cell B. However, server Gray is preferable since it

already is a master to cell A, which overlaps regions of cells C

and D facilitating speedier object file transfers. Therefore, the

cells should be assigned to servers in such a way as to meet the

above criteria that neighboring cells should be preferably

assigned to different servers.

For loose square overlap, there are just four fundamental motifs

of cell-to-server assignments that exist between neighboring and

overlapping cells, as shown in Figure 9.

The inferences drawn from all four cases with respect to load

balancing and thrashing are tabulated in Table 2 and Table 3.

The tables clearly show that a reasonable trade-off has to be

made between these two factors of thrashing and load balancing

while designing the Cell Allocation Graphs. These decisions can

be made based on the specific game engines.

4.4 Dynamic Allocation
Dynamic cell allocation methods between servers must

accomplish a multitude of things with reasonable efficiency.

They must accommodate our restriction that the system cannot

host all copies of a given entity on a single server. Additionally,

allocations should provide some level of load balancing among

servers. Finally, there may be ways to mitigate some types of

thrashing effects, as discussed in the section above, while

designing the Dynamic Cell Allocation Algorithm (DCAA).

These must be done appropriately given different problem

properties, including the cell graph structure factors discussed

above, and issues such as the behavior and interaction of objects

within the system. Considering also the heterogeneity of host

servers, the algorithm has to account for variable server

capacities and dynamic communication patterns within the

network. These factors impact both latency and load.

Dynamic cell allocation is a type of constrained multi-object

optimization problem. Redundancy requirements establish

primary constraints, and load balancing, latency reduction, and

thrash-mitigation objectives that must be optimized.

There is no single allocation method that will suit all situations,

but some general observations can be made regarding the

tradeoffs between cell structures that are fundamental to

designing an effective partitioning scheme.

Using tight overlap carries increased communication burden and

(perhaps) unnecessarily excessive redundancy, but they provide

Cell to

server

assignment

Directions of object motion

Free of thrashing

when

Subject to thrashing

when

A

Layer1

server is

the

master

A

Layer2

server is

the

master

A

Layer1

server is

the

master

A

Layer2

server is

the

master

9(a)

 - -

9(b)

 - -

9(c)

 - -

9(d)

Table 2: Favorable Server allocation for Thrash mitigation

xx
xx
xx

xxx
xxx
xxx

A

)

B

)

C D

xxx
xxx
xxx

xx
xx
xx

A

B

C

)

D

)

xx
xx
xxx
xxx

A

B

C

)

D

xxx
xxx
xxx

xx
xx
xx

A

)

B

)

C D

(a) (b)

(c) (d)

Cells in Layer1 are in solid lines and cells in

Layer2 are in dashed lines

Figure 9. (a) Neighboring cells in both layers

assigned to same server, (b) Neighboring cells

in Layer1 only assigned to same server, (c)

Neighboring cells in Layer2 only assigned to

same server, (d) Neighboring cells in both

layers assigned to different servers

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8731
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8731

less severe constraints for the allocation algorithm. Loose,

square overlap structures provide the minimum replication of all

objects in the environment and thus reduce the communication

costs of the redundancy since fewer copies are exchanged

between servers, but finding allocations that provide redundancy

is algorithmically more difficult. We use a bit of graph theory to

help explain why this is so.

Consider the cell allocation graph for a square-cell, loose

overlap partitioning. Dynamic allocation methods must assign

each cell to a server, and the constraint that permits complete

redundancy implies that no two overlapping cells be on the same

server. This is equivalent to a graph coloring problem, which is

NP-hard in the general case for any graph. Cell allocation graphs

are a subset of possible graphs, and an example is sufficient to

show that these particular graphs admit efficient assignment

solutions: visualize the graphs as two interleaved levels, divide

the server list into two mutually exclusive lists, and assign

servers from one group to one level and the remaining servers to

the other level. In this way, connected nodes cannot be served

by the same server and the smallest set of servers that can admit

such a solution is known (two, as in the left graph of Figure 4).

Table 3: Load distribution in the event of a server crash

Though simple algorithmic solutions that satisfy the redundancy

constraints are possible when using a loose overlap, to optimize

for other factors (e.g., load balance), the allocation algorithm

must search within a quite sparse subset of graphs with valid

assignments (no overlapping cells on the same server). This

implies that the larger multi-objective optimization problem may

be difficult when the server-cell ratio is small.

When using tight overlap, the redundancy requirement creates a

less severe mandate: It is merely necessary that an object be

replicated on at least one other server. Server-cell allocation in

this context is no longer a traditional graph coloring problem,

but rather a form of weak graph coloring [22]. Solving this

optimization problem means the definition of a valid assignment

is related to the notion of a k-partially proper coloring: a t-

coloring of a graph G = V, E , where t is the number of colors

(servers) that must be assigned to the vertices (cells), is k-

partially proper if every vertex V has at least min{deg(),k}

neighbors with different colors, where deg() denotes the degree

of . In the case of graph coloring (and loose overlap cell

assignment), k is the maximum degree of any vertex in the

graph. In the case of tight overlap, any combination of north and

south, or east and west overlapping cells will completely cover a

given cell. This means a subset of 3- and 2-partially proper

colorings admit valid cell assignments. Additionally, the four

diagonal overlapping cells completely cover a cell, thus an even

larger subset of 5- and 4-partially proper colorings admit valid

assignments. If there are six or more overlapping cells with a

different assignment than the given cell, then the redundancy

constraint must be met since at least two must be the north/south

or east/west pair. This means that all k-partially proper colorings

with k > 5 represent valid cell assignments. The redundancy

requirement for tight overlap is a substantial relaxation of the

coloring constraint from the loose overlap case.

In fact, the space of server-cell assignments that confirms full

redundancy when using tight overlap is much larger than it is for

the loose overlap case, perhaps easing optimization. We will

employ a combination of formal and empirical analysis to help

develop guidelines for algorithm designers for how to select cell

geometry given different server and problem configurations.

5. CONCLUSIONS & CURRENT STATUS
Our goal is to address, using distributed computing, solutions for

large-scale, highly interactive VR environments that provide

four critical capabilities (redundancy, load balancing, thrash

mitigation, and latency reduction) in a cohesive, unified manner.

In this paper, we present a promising new architecture that

combines ideas from existing methods that independently

address these issues. A prototype of this system currently serves

as a test bed to explore our ideas for finding unified answers to

these complex questions.

In this paper, we discuss some of our analyses of the

architecture. From this we know that cell resolution and overlap

are the critical representational research points, and that

dynamic cell allocation can be seen as a constrained multi-

objective optimization problem, where the primary constraint is

related to a generalization of the graph coloring problem.

Experiments involving various cell graph structures, allocation

algorithms, and simulations of varying complexity of interaction

patterns are currently under development within this test bed.

Already, we can say the following. When the server-cell ratio is

relatively high, a loose overlap cell structure will often be a

better choice. Resolving the redundancy constraints will be less

challenging and the dynamic cell allocation method can

concentrate on quick, approximate solutions that minimize

latency, load imbalance, and thrashing. Often simple divisions

will be sufficient: the server list is divided in half and the two

³OD\HUV´� RI� JUDSK� DUH� WUHDWHG� VHSDUDWHO\ and within-layer

Cell to Server

Assignment

 , n ± Functional Server w/ Max.

 Load of n Quadrants

 ± Crashed Server

NA ± Not Applicable

Gray
Light

Gray
Stripes Dots

9(a)
, 4 NA NA

 NA , 4 NA

9(b)

, 2 NA

, 2 NA

 NA , 2 , 2

9(c)

, 2 , 2 NA

 , 2 NA

 , 2 NA

9(d)

 , 1 , 1

 , 1 , 1

, 1 , 1

, 1 , 1

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8731
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8731

assignments that keep local groups of neighboring cells on the

same server. In such cases, balancing can take the form of

resizing these local clusters relative to one another, and when

the surface boundaries of those local groups is as small as

possible, the number of objects migrated as a result of re-

balancing is minimized. When the server-cell ratio is very small,

though, more thought into cell structure and allocation is

needed, and the complete multi-objective optimization problem

may be impractical. Tight overlap in cells may be needed to

meet redundancy constraints, and load balancing events may

need to be reserved for extreme cases of imbalance. More

attention should be spent, then, on redundancy and latency.

Currently, we are implementing this architecture in software

hosted on a 600+ core system. Once prototyping is complete we

will be attaching the front end of a simple game/virtual

environment and conducting experimentation aimed at assessing

and enhancing runtime performance; determining trade-offs on

cell size, entity performance, and AoI; and experimenting with

the DCAA. We are developing example simulations within the

Java-based multiagent simulation framework MASON [20].

6. ACKNOWLEDGEMENTS

This work was funded a part of the Army RDECOM STTC

project High Performance Computing for Simulation Training

Systems (N61339-07-C-0107).

7. REFERENCES
[1] C. Abt. Serious Games. Viking Press, New York, 1970.

[2] D. Ahmed and S. Shirmohammadi. A microcell oriented

load balancing model for collaborative virtual

environments. In Proceedings from the 2008 Virtual

Environments, Human-Computer Interfaces and

Measurement Systems, pages 86±91, 2008.

[3] R. Arakji and K. Lang. Avatar business value analysis: A

method for the evaluation of business value creation in

virtual commerce. Journal of Electronic Commerce,

9(3):207±218, 2008.

[4] Blizzard Entertainment. World of

warcraft.http://www.worldofwarcraft.com.

[5] K.-T. Chen, P. Huang, and C.-L. Lei. Game traffic

analysis:an MMORPG perspective. In Proceedings of the

InternationalWorkshop on Network and Operating Systems

Support for Digital Audio and Video, pages 19±24, 2005.

[6] Darkstar discussion forum. Scalability and performance of

multimode PDS. http://www.projectdarkstar.com/forum/

?topic=829.msg5678#msg5678, September 2009.

[7] J. de Oliveira and N. Georganas. Velvet: An adaptive

hybrid architecture for very large virtual environments.

Presence: Teleoperators and Virtual Environments,

12(6):555±580, 2003.

[8] F. Glinka, A. Ploss, J. Mueller-Iden, and S. Gorlatch. Rtf:

A realtime framework for developing scalable multiplayer

online games. In Proceedings of the 6th ACM SIGCOMM

Workshop on Network and System Support for Games,

pages 81±86, 2007.

[9] I. Kazem, D. T. Ahmed, and S. Shirmohammadi. A zone

based architecture for massively multi-user simulations. In

Proceedings of the 2007 Spring Simulation

Multiconference, pages 149±156, 2007.

[10] J. Kim, J. Choi, D. Chang, T. Kwon, Y. Choi, and E. Yuk.

Traffic characteristics of a massively multi-player online

role playing game. In Proceedings of 4th ACM SIGCOMM

Workshop on Network and System Support for Games,

pages 1±8, 2005.

[11] K.-C. Kim, I. Yeom, and J. Lee. Hyms: A hybrid mmog

server architecture. IEICE Trans. on Information Systems,

(12):2706±2713, 2004.

[12] Linden Lab. Second life. http://secondlife.com/.

[13] P. Morillo, J. Orduna, M. Fernandez, and J. Duato.

Improving the performance of distributed virtual

environment systems. IEEE Transactions on Parallel and

Distributed Systems, 16(7):637±649, 2005.

[14] B. Ng, A. Si, R. Lau, and F. Li. A multi-server architecture

for distributed virtual walkthrough. In Proceedings of the

ACM Symposium on Virtual Reality Software and

Technology, pages 163±170, 2002.

[15] M. Proctor, M. Bauer, and T. Lucario. Helicopter flight

training through serious aviation gaming. JDMS:

Applications, Methodology, Technology, 4(5), 2007.

[16] Sun Microsystems Laboratories. Project Darkstar.

http://www.projectdarkstar.com/

[17] J. Waldo. Scaling in games & virtual worlds. Queue,

6(7):10±16, 2008.

[18] S. Webb,W. Lau, and S. Soh. NGS: an application layer

network game VLPXODWRU��,Q�,(�¶����3URFHHGLQJV�RI�WKH��UG�

Australasian conference on Interactive entertainment, pages

15±22, Murdoch Univ., Australia, 2006. Murdoch Univ.

[19] M. Yee. The demographics, motivations, and derived

experiences of users of massively multi-user online

graphical environments. Presence: Teleoperators and

Virtual Environments, 15(3):309±329, 2006.

[20] S. Luke, G.C. Balan, L.A. Panait, C. Cioffi-Revilla, and S.

Paus. MASON: A Java multi-agent simulation.

[21] Library. In Proceedings of Agent 2003 Conference on

Challenges in Social Simulation.

[22] F. Kuhn. Weak graph colorings: distributed algorithms and

applications. In Proceedings of the Twenty-First Annual

Symposium on Parallelism in Algorithms and

Architectures, pp. 138-144, 2009.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8731
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8731

