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ABSTRACT 
The growing popularity of large-scale, highly interactive virtual 

reality systems such as massively multiplayer online games 

(MMOGs) necessitates highly robust and efficient architectures. 

Distributed implementations are common, but they must deal 

with challenges such as supporting very large numbers of 

closely interacting users, the need to maintain robustness in the 

face of hardware failure, balancing the processing load, reducing 

user latency, and minimizing thrashing effects caused by 

movement between servers.  Although a number of existing 

techniques address each of these independently, there are no 

unified methods that attack these problems cohesively. 

We present methods to simultaneously address these critical 

challenges²a novel approach and associated software design 

intended for distributed high performance computing facilities in 

which the world is divided into a regular lattice of overlapping 

cells (providing redundancy), which are dynamically assigned to 

servers within the High Performance Computing (HPC) 

(facilitating load balancing).   We believe this architecture can 

be applied to non-spatial cells. This architecture is currently 

being implemented in a test bed for further experimentation. 

 

Categories and Subject Descriptors 
I.6.8 [Computing Methodologies]: Simulation and Modeling²

types of simulation 

 

General Terms 
Algorithms, Design, Performance 
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1.  INTRODUCTION 
Large-scale, highly interactive virtual realities (VR) such as 

those popularized by massively multiplayer online games 

(MMOGs) permit growing numbers of interacting users to 

become immersed in a shared, virtual world.   Beyond games 

meant purely for entertainment, expansion of these ideas into 

serious game technology [1] presents unprecedented training 

opportunities for the military [15] and emergency services 

communities.  One example is the ability to conduct large-scale 

multi-team training, virtual training simulations of complex and 

real-world scenarios involving a host of different personnel 

working with different organizations with different specialized 

goals (e.g., paramedics, firemen, police, and military personnel 

in first response to some natural or manmade event). Finally, an 

infrastructure supporting large-scale interactions between 

heterogeneous users and equipment offers new opportunities and 

paradigms for social networking [19]. 

Advances n communication and computational infrastructures 

have led to increased sophistication of these digital virtual 

environments (DVEs) and interactions within them²complexity 

demanded by many applications such as the multi-team training 

example just mentioned.  Additionally, increased scale of user 

interaction is of interest to entertainment [18] and commerce [3]. 

An expanded user base necessitates highly scalable and reliable 

software, as well as hardware solutions capable of handling 

smooth front-end and back-end execution. To achieve this, game 

and virtual reality systems rely more and more on distributed 

back-end solutions, where game and VR server responsibilities 

are divided among a number of interconnected machines. 

Distributed solutions introduce a number of difficulties, and four 

key requirements of large-scale, distributed VR systems are: 

  1. Robustness to hardware failure ± Distributed systems 

should avoid single-point-of-failure problems where part of the 

world state is lost with a server failure.  

  2. Balancing of processing load ± Dynamic entity behaviors 

demand responsive methods for shifting processor load to 

conserve computational resources. 

  3. Mitigation of thrashing ± Distributed systems should avoid 

repeated inefficient transitions of objects between resources. 

  4. Reduction of user latency ± Game systems must avoid 

unacceptable latencies between the user clients and the servers. 

Currently these requirements are addressed separately by a 

number of technologies; however, our interest is in how these 

four can be achieved by a single, cohesive solution. Our current 

work has led to the development of a new software architecture 

intended for use with distributed high performance computing 

facilities. This architecture addresses these concerns by dividing 

the world into overlapping cells (providing redundancy and 

mitigating thrashing), which are dynamically assigned to servers 

within an HPC (facilitating load balancing). The design provides 
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seamlessness and continued connectivity.  The HPC orientation 

of our design does not yet consider external network issues. 

This paper introduces a preliminary study and design of this 

architecture. Our analysis considers the redundancy, load-

balancing and thrash-mitigation effects of certain geometric 

variations in lattice structure, as well as how such variations 

impact dynamic cell allocation. User latency is a vital concern 

and addressed by our architecture; however, it is not the focus of 

this paper. Additionally, we describe a spatial division of the 

world, but our ideas can be extended to cases where cells are 

organizational or social in nature. We conclude with 

requirements for effective dynamic cell allocation algorithms 

and suggest some plausible simple solutions. 

2.  RELATED WORK 
Distributed MMOGs and other multi-server, large-scale VR 

systems use a variety of methods to address the four desired 

capabilities mentioned above. Multi-server solutions must first 

address the question of how to divide server responsibilities, 

which typically involves dividing users or other world 

components among different machines. These choices lead to 

different advantages and disadvantages. 

The method of sharding [18] maintains separate instances of the 

complete game world on different servers, where each server 

supports different sets of users (e.g., as in World of Warcraft 

[4]). This approach only partially addresses single-point-of-

failure issues since a server failure entirely destroys the game 

experience for some users while leaving other users unaffected. 

Load balancing and latency reduction techniques can be 

addressed by effective allocation of users to servers. Users and 

objects do not move between servers, so there are no back-end 

thrashing effects caused by migrations between machines; 

however, this disjunction comes at the cost of severe constraints 

on the types and quantity of interactions that are possible. 

Slightly more complex approaches are geographically 

constrained partitioning and zoning methods, where the game 

world is partitioned into geographically distinct cells, with each 

cell assigned to a separate server (e.g., as in Second Life [12]). 

Here, users can interact with any object or user, though 

movement between cells requires migration between servers. 

Migration raises several challenges, such as how to handle edge 

effects at cell boundaries and how to balance server processing 

loads and manage server-client latency problems. Simply relying 

on user dispersal to address these issues is infeasible given 

known traffic patterns in typical MMOGs [10, 5]. One solution 

is to use avatar generated workloads to manage load balancing 

[13], though balancing in this way means that serving requests 

from each user requires reading objects from all servers. 

Zoning can be approached less severely by partitioning the 

world into small cells and assigning the cells to individual 

servers [2, 14]. The aim is to address load balancing by 

distributing equal number of users to the partitions while 

simultaneously minimizing inter-partition costs, though cell 

geometry and migration constraints differ among approaches. 

Such solutions lack seamless migration across cells; however, 

thrash mitigation can be approached by creating buffer regions 

at cell boundaries and defining (different) check-in and check-

out edges to trigger shifts in server responsibilities [7, 8]. Still, 

without redundancy such systems are not fault tolerant. 

Alternatively, publisher-subscriber methods [17] relay messages 

to users, and processing workload can be broken down into 

tasks, each of which can be scheduled on any server (e.g., as 

implemented within Project Darkstar [16]). Game objects can be 

stored in a fully transactional database for synchronization and 

consistency purposes. Unfortunately, this solution does not yet 

scale well in multi-server settings [6]. Another method to 

address scalability and single-point-of-failure is the well-known 

Peer-to-Peer (P2P) paradigm [11]. In this design, some server 

functions are distributed among clients enabling users to 

communicate with each other without going through a server. 

An example [9] puts forth a hybrid architecture that combines 

ideas from P2P and zoning for increased scalability. Limitations 

in authentication, security and persistence, make most P2P 

impractical solutions for large-scale MMOGs. 

We strike a balance between these approaches. In our zone-

based approach, users and objects can migrate throughout the 

DVE. Even so, seamlessness and fault tolerance are achieved via 

a natural redundancy mechanism enabled by overlapping cells. 

3.  AN OVERLAPPING, ZONE-BASED 

ARCHITECTURE 

We divide the virtual world into a lattice of small, overlapping 

cells (zones)1. Cells can have different geometric shapes (e.g., 

square, hexagonal), and their pattern of overlap may differ to 

form lattices with different types of connectivity. Cells must 

completely tessellate the region of interest.  The cell overlap 

scheme serves three important functions in our architecture: it 

provides a mechanism for redundancy to protect against server 

crash, it facilitates a system for seamless migration across cell 

boundaries, and it allows load balancing methods to control the 

balance between reads and writes of object data among the 

servers. Details follow. 

Cells are pre-distributed amongst the servers for processing. 

Updating responsibilities for each entity (object and user data in 

the environment) are assigned to a cell based on the location of 

the object in the world, and the server managing that cell can be 

considered the master host of such objects. In addition, other 

cells will have redundant, read-only copies of the entity, and 

other servers managing such cells can be considered slave hosts 

for the entity. Thus each server can be considered both a master 

host for some entities and a slave host for other entities. There 

are redundant copies for all entities, but only a single server is 

permitted to write changes of the HQWLW\¶V�VWDWH� 

This master-slave relationship is determined by the overlap: 

cells may access local, cached slave-hosted copies of entities 

when the entity resides in a region of overlap with another cell. 

The system is not permitted to host all copies of a given entity 

on a single server, which entails certain regional constraints for 

server-cell assignment. These constraints differ based on cell 

geometry, and some will be discussed in detail in the next 

section. Figure 1 illustrates what we designate as a loose square 

cell overlap pattern. 

                                                           
1
 While zoning is currently spatially oriented, we anticipate 

extensions to non-spatial partitions, such as social or group 

hierarchies 
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The simplest rule for cell-to-server assignments is described as 

follows. In Figure 1, lattice constant a = 1, where, the lattice 

constant of any layer of cells is defined as the distance between 

the center of a cell and the center of its adjoining cell. Adjoined 

cells are those that share any common edge entirely.   Each cell 

is divided into 4 quadrants, (11), (12), (21), (22). The cells in 

both layers are strictly maintained to be of exactly the same 

shape and dimension, while their spatial origin is set apart by a 

distance ¿x = ½ . a and ¿y = ½ . a with respect to each other, to 

generate the overlapping pattern. As can be seen in Fig. 1, any 

cell from a particular layer is overlapped partially by 4 cells 

from the overlapping layer, on its 4 quadrants respectively, thus, 

acquiring 100% of total overlap. If Server1 serves as the master 

to this cell, it acts as a slave to its 4 overlapping cells.
 

Update responsibilities of entities are transferred between 

servers as those entities are repositioned throughout the world. 

Such decisions are made by using the overlap region between 

cells to define check-in and check-out boundaries for entities 

moving between cells. We define an Area of Interest (AoI) 

around an entity, and when that AoI LQWHUVHFWV�WKH�PDVWHU�FHOO¶V�

boundary, management of the entity is shifted. Figure 2 below 

illustrates this idea with square cells. 

The value of the AoI radii of all objects can either differ or be 

the same. Experimentation will help determine optimum values 

and optimum ratios between cell dimensions and AoI radii. 

Seamless transition of objects between cells is made possible by 

using the check-in and check-out boundaries, which determine 

ZKHQ� D� VHUYHU� VKRXOG� EHJLQ� WR� DFW� DV� WKH� REMHFW¶V� PDVWHU��

However, the velocity of the object plays a crucial role in 

providing smooth transition from one server to the other. This is 

due to the requirement that the data update needs to be quicker 

than the object velocity. If this is not true the radius of the AoI 

must be increased by some  (Fig. 2 (b)) to accommodate such 

issues.  The value of , and factors on which it depends, is 

another area for experimentation. 

4.  ANALYSIS 
Early prototypes of this architecture provide some encouraging 

results. Additional analyses are found below. 

 

4.1  Cell Graph Structures 
We distinguish between cells that overlap and cells that 

neighbor one another. Overlapping cells share some region of 

coverage, while neighboring cells share an adjoining boundary. 

For example, the tiles on a checkerboard neighbor one another; 

however, if a new tile is placed on the point where four checkers 

tiles meet, the new tile would overlap the four checkers tiles.  

The partitioning of the world is determined by cell geometry, 

cell size, and the overlap pattern of cells. We discuss only 

divisions of square cells for this paper, though the concepts 

generalize to other cell shapes (e.g., hexagons). Likewise, cells 

may be overlapped in many ways, but we focus on two choices:  

loose overlap and  tight overlap. In Fig. 3, we see that for the 

loose overlap, any region of the game world is shared by 2 cells 

(shown by the hashed region), each belonging to a different 

layer and different server. Whereas, for the tight overlap, any 

region is shared by 4 cells each belonging to a different layer 

and different server. 

It is useful to visualize these structures in graph form. There are 

two graphs: one for neighboring cells and one for overlapping 

cells. We are primarily concerned with the latter, in which each 

vertex in the graph represents a cell and edges between two 

vertices indicate where the two corresponding cells overlap. We 

can further refine this representation by including the server 

assignment information as the color of a vertex. We call such 

Check-in boundary for Cell A 

Overlap Region 

xxx
xxx
xxxCell A 

Cell B 

AoI 

AoI 

r 

r +   

Figure 2.   (a) Check-in and Check-out boundaries in 

overlapping cells, (b) Area of Interest with increment 

Loose square overlap Tight square overlap 

Cells of Layer 1 

Cells of Layer 2 

Cells of Layer 1 

Cells of Layer 2 

Cells of Layer 3 

Cells of Layer 4 

Figure 3.  Example of loose and tight square overlap 

 

xx

Figure 1.  Loose Square Cell Overlap Pattern 

x
Q 

R 

a = 1 

Layer 1 

Layer 2 

Cells assigned to Server1 ± Server1 is master to object Q 

and slave to object R 

Cells assigned to Server2 ± Server2 is master to object R 

and slave to object Q 

(1 1) (1 2) 

(2 1) (2 2) 
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graphs the cell allocation graph (CAG), Figure 4 below 

illustrates loose and tight overlapping CAG examples. The 

dotted squares show the portions of the CAG that correspond to 

their equivalent representation using cells in Figure 3, for the 

loose and tight overlaps respectively.  

The ratio between the cell size and the size of the space 

determines the resolution with which the system is capable of 

load balancing, but it also impacts latency and redundancy. 

When object AoIs are too large with respect to the cell 

resolution, the radius of the AoI may span several cells, and the 

system will either have to make remote calls rather than rely on 

slave-hosted caches, or be configured with more sophisticated 

overlap strategies that permit greater read access to object 

information. When interaction regions are very small relative to 

cell size, then overlap and redundancy strategies will be less 

useful since objects within the cell will seldom interact with 

objects in other cells. In practical applications, the interaction 

region will vary between different objects and during execution. 

A good general lower bound for cell size can be obtained given 

an average size for the interaction region as follows. Consider 

again Figure 2, above and a hypothetical case where the 

diameter of the interaction region is precisely half the width of a 

cell and the object is centered in the overlap region. If the object 

moves slightly in the direction toward the overlapped cell, the 

check-out boundary will be triggered, and it will be migrated. If 

it then immediately backtracks, it will quickly trigger a 

migration back. Thus, it is best if cell widths are larger than half 

the diameter of the average AoI. 

This design allows two ways for achieving load balancing. The 

first being load distribution from a congested cell, served by a 

server, to its overlapping cells, served by different servers. The 

second is by using the Dynamic Cell Allocation Algorithm 

(DCAA). Server load is measured as the number of dynamic 

entity processes being handled in a given period of time. 

However, load on a server can also be generated by other 

processes, such as creating, acquiring and deleting entity 

responsibilities. An appropriate metric to measure combined 

load needs to be devised. 

4.2  Entity Motion 
As previously mentioned, entity velocity is an important 

consideration trading off cell size and AoI. Below, a discussion 

of entity dynamics and thrash mitigation methods is provided for 

the simplest case of a loose square cell overlap pattern. 

In the loose overlap each square cell in a layer is overlapped by 

four other cells in the overlapping layer. For convenience of 

description, let the type of cell filling indicate the server to 

which they have been assigned, such as in Figure 5, Cell A  

server Gray (layer 1), cells B and E  server Stripes (layer 2) 

and cells C and D  server Dots (layer 2). The four quadrants 

of cell A are labeled as (11), (12), (21) and (22).  

For an object, z, in quadrant (12), either server Gray or server 

Dots could be its master server. Figure 6 shows the different 

stages of the object motion as it moves from quadrant (12) to 

quadrant (11). For this scenario, it is preferable for the Gray 

server to act as WKH� REMHFW¶V master.  The four stages for the 

entity motion appear below in Figure 6, followed by discussion. 

 In stage (a), assume Gray to be the master and Dots to be the 

slave server. Gray updates Dots on the movement of object z.  In 

stage (b), the AoI of z touches the border of cell B and C, and 

slave copies of the object files have to be created in server 

Stripes. Gray has to now update Dots as well as Stripes.  In stage 

(c), the AoI of z crosses the boundary of cell C, therefore Gray 

keeps updating Dots and Stripes. In stage (d), the object is 

entirely inside cell B, and Gray has to now update only Stripe. 

The main contributing cost in this entire scenario, occurs in 

stages (b) and (c), where, Total Cost = Cost of creating slave 

copies of object in server Stripes + Cost of updating servers 

Dots and Stripes by server Gray. A hysteresis type of design 

could mitigate some of this cost and help minimize thrashing. 

If the same scenario were to be considered, but with server Dots 

being the master in stage (a) and server Gray being the slave 

server, the contributing cost would again occur in stage (b), 

xxx
xxx
xxx

xxx
xxx
xxxxxx
xxx
xxx

xxx
xxx
xxx

A

C

D E 

(1 1) (1 2) 

z

) 

(2 1)  (2 2) 

B

Figure 5.  Quadrants in the loose square cell overlap pattern 

 

Figure 4. Cell Allocation Graphs for loose and 

tight square cell partitioning 

 

Figure 6.  Motion of object across overlapping cells 
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where, Total Cost = Cost of creating master copies of the object 

in server Stripes + Cost of updating servers Gray and Dots by 

server Stripes. The only difference between these two 

possibilities is the handover of master status from Dots to 

Stripes in the second scenario as opposed to no master status 

handover by server Gray in the first scenario. These are likely 

insignificant in terms of Total Cost. However, once the object 

touches the boundary between cells B and C and chooses to 

oscillate across this boundary, in scenario 1 these oscillations 

will be free of thrashing since server Gray is the master and the 

object is entirely within cell A. Considering this situation, 

scenario 1 is the more favorable option. 

The above description is for entity motion in the horizontal 

direction from quadrant (12) to quadrant (11).  Extending this 

idea for objects in motion in all three directions, a simple set of 

rules can be formulated for the most favorable option that 

minimizes total cost. This is summarized in Table 1. 

Note that the above argument addresses object thrashing effects 

when in motion across boundaries that are formed by edges of 

neighboring cells of the same layer. However, when the object 

motion is diagonal across the intersection point between one 

horizontal and one vertical edge of the two different layers, 

oscillatory motion in this direction, at these points, cannot be 

free of thrashing unless any pair of the two neighboring cells of 

either layer, those that share an edge at this intersection, are 

assigned to the same server. There are 8 such cases that could 

occur in the case of the loose square overlapping cells, as in 

Figure 7. Similarly for the loose hexagonal overlap motif, a set 

of rules can be formulated and 6 cases exist for which thrashing 

is unavoidable unless the pair of neighboring cells in either layer 

hosting this movement are assigned to the same server.  

4.3  Server Crash 
A natural fault tolerance is accomplished in our design because 

of the redundancy provided by overlapping cells.  When a server 

crashes, any entities over which it had master control are already 

replicated on at least one other server²the system must merely 

transfer master control DQG� QHHGQ¶W� VHek data from a crashed 

machine. A preliminary analysis of this follows.  

Figure 8 is a simple visualization of cells allocated to various 

servers and their mutual communication channels.  Standard 

For direction of motion of 

object 

Master server of object 

should be that server which is 

the master of the cell that 

holds the object in quadrant 

 

 (1 1) 

 

 
(1 2) 

 

 
(2 1) 

 

 
(2 2) 

Table 1:  Favorable Server-Motion allocation for Cost 

minimization 
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message passing interfaces can handle communication between 

servers for transfer of object data permissions, update 

notifications, etc. 

In the cell overlap pattern in Figure 8(a), cells C and D are being 

overlapped by cells A and B. Figure 8(b) shows the 

corresponding diagram of the server farm with cell allocations, 

which illustrates communication between the respective servers.  

In the event that server Light Gray crashes, cell B (which 

overlaps cells C and D in quadrants (11) and (12)) gets stranded. 

Server Gray, which acts as master to cell A (and also overlaps 

cells C and D but in different quadrants (21) and (22)) could 

serve as master to cell B. Provided that server Gray has 

allowable load levels, this might be the most efficient 

assignment, considering that server Gray already has an open 

channel of communication between itself and servers Stripes and 

Dots (because Cell A overlaps cells C and D). Thus, in the 

above scenario, any server that meets the criteria of the cell 

allocation problem discussed in section 4.4 can be called to act 

as master to cell B. However, server Gray is preferable since it 

already is a master to cell A, which overlaps regions of cells C 

and D facilitating speedier object file transfers. Therefore, the 

cells should be assigned to servers in such a way as to meet the 

above criteria that neighboring cells should be preferably 

assigned to different servers. 

For loose square overlap, there are just four fundamental motifs 

of cell-to-server assignments that exist between neighboring and 

overlapping cells, as shown in Figure 9. 

The inferences drawn from all four cases with respect to load 

balancing and thrashing are tabulated in Table 2 and Table 3. 

The tables clearly show that a reasonable trade-off has to be 

made between these two factors of thrashing and load balancing 

while designing the Cell Allocation Graphs. These decisions can 

be made based on the specific game engines. 

4.4  Dynamic Allocation 
Dynamic cell allocation methods between servers must 

accomplish a multitude of things with reasonable efficiency. 

They must accommodate our restriction that the system cannot 

host all copies of a given entity on a single server. Additionally, 

allocations should provide some level of load balancing among 

servers. Finally, there may be ways to mitigate some types of 

thrashing effects, as discussed in the section above, while 

designing the Dynamic Cell Allocation Algorithm (DCAA). 

These must be done appropriately given different problem 

properties, including the cell graph structure factors discussed 

above, and issues such as the behavior and interaction of objects 

within the system. Considering also the heterogeneity of host 

servers, the algorithm has to account for variable server 

capacities and dynamic communication patterns within the 

network.  These factors impact both latency and load. 

Dynamic cell allocation is a type of constrained multi-object 

optimization problem. Redundancy requirements establish 

primary constraints, and load balancing, latency reduction, and 

thrash-mitigation objectives that must be optimized. 

There is no single allocation method that will suit all situations, 

but some general observations can be made regarding the 

tradeoffs between cell structures that are fundamental to 

designing an effective partitioning scheme. 

Using tight overlap carries increased communication burden and 

(perhaps) unnecessarily excessive redundancy, but they provide 
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less severe constraints for the allocation algorithm. Loose, 

square overlap structures provide the minimum replication of all 

objects in the environment and thus reduce the communication 

costs of the redundancy since fewer copies are exchanged 

between servers, but finding allocations that provide redundancy 

is algorithmically more difficult. We use a bit of graph theory to 

help explain why this is so. 

Consider the cell allocation graph for a square-cell, loose 

overlap partitioning. Dynamic allocation methods must assign 

each cell to a server, and the constraint that permits complete 

redundancy implies that no two overlapping cells be on the same 

server. This is equivalent to a graph coloring problem, which is 

NP-hard in the general case for any graph. Cell allocation graphs 

are a subset of possible graphs, and an example is sufficient to 

show that these particular graphs admit efficient assignment 

solutions: visualize the graphs as two interleaved levels, divide 

the server list into two mutually exclusive lists, and assign 

servers from one group to one level and the remaining servers to 

the other level. In this way, connected nodes cannot be served 

by the same server and the smallest set of servers that can admit 

such a solution is known (two, as in the left graph of Figure 4). 

Table 3:  Load distribution in the event of a server crash 

 

Though simple algorithmic solutions that satisfy the redundancy 

constraints are possible when using a loose overlap, to optimize 

for other factors (e.g., load balance), the allocation algorithm 

must search within a quite sparse subset of graphs with valid 

assignments (no overlapping cells on the same server).  This 

implies that the larger multi-objective optimization problem may 

be difficult when the server-cell ratio is small. 

When using tight overlap, the redundancy requirement creates a 

less severe mandate: It is merely necessary that an object be 

replicated on at least one other server. Server-cell allocation in 

this context is no longer a traditional graph coloring problem, 

but rather a form of weak graph coloring [22]. Solving this 

optimization problem means the definition of a valid assignment 

is related to the notion of a k-partially proper coloring: a t-

coloring of a graph G = V, E , where t is the number of colors 

(servers) that must be assigned to the vertices (cells), is k-

partially proper if every vertex   V has at least min{deg( ),k} 

neighbors with different colors, where deg( ) denotes the degree 

of . In the case of graph coloring (and loose overlap cell 

assignment), k is the maximum degree of any vertex in the 

graph. In the case of tight overlap, any combination of north and 

south, or east and west overlapping cells will completely cover a 

given cell.  This means a subset of 3- and 2-partially proper 

colorings admit valid cell assignments.  Additionally, the four 

diagonal overlapping cells completely cover a cell, thus an even 

larger subset of 5- and 4-partially proper colorings admit valid 

assignments.  If there are six or more overlapping cells with a 

different assignment than the given cell, then the redundancy 

constraint must be met since at least two must be the north/south 

or east/west pair. This means that all k-partially proper colorings 

with k > 5 represent valid cell assignments.  The redundancy 

requirement for tight overlap is a substantial relaxation of the 

coloring constraint from the loose overlap case. 

In fact, the space of server-cell assignments that confirms full 

redundancy when using tight overlap is much larger than it is for 

the loose overlap case, perhaps easing optimization. We will 

employ a combination of formal and empirical analysis to help 

develop guidelines for algorithm designers for how to select cell 

geometry given different server and problem configurations. 

5.  CONCLUSIONS & CURRENT STATUS 
Our goal is to address, using distributed computing, solutions for 

large-scale, highly interactive VR environments that provide 

four critical capabilities (redundancy, load balancing, thrash 

mitigation, and latency reduction) in a cohesive, unified manner. 

In this paper, we present a promising new architecture that 

combines ideas from existing methods that independently 

address these issues. A prototype of this system currently serves 

as a test bed to explore our ideas for finding unified answers to 

these complex questions. 

In this paper, we discuss some of our analyses of the 

architecture. From this we know that cell resolution and overlap 

are the critical representational research points, and that 

dynamic cell allocation can be seen as a constrained multi-

objective optimization problem, where the primary constraint is 

related to a generalization of the graph coloring problem. 

Experiments involving various cell graph structures, allocation 

algorithms, and simulations of varying complexity of interaction 

patterns are currently under development within this test bed. 

Already, we can say the following. When the server-cell ratio is 

relatively high, a loose overlap cell structure will often be a 

better choice. Resolving the redundancy constraints will be less 

challenging and the dynamic cell allocation method can 

concentrate on quick, approximate solutions that minimize 

latency, load imbalance, and thrashing. Often simple divisions 

will be sufficient: the server list is divided in half and the two 
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assignments that keep local groups of neighboring cells on the 

same server. In such cases, balancing can take the form of 

resizing these local clusters relative to one another, and when 

the surface boundaries of those local groups is as small as 

possible, the number of objects migrated as a result of re-

balancing is minimized. When the server-cell ratio is very small, 

though, more thought into cell structure and allocation is 

needed, and the complete multi-objective optimization problem 

may be impractical. Tight overlap in cells may be needed to 

meet redundancy constraints, and load balancing events may 

need to be reserved for extreme cases of imbalance. More 

attention should be spent, then, on redundancy and latency. 

Currently, we are implementing this architecture in software 

hosted on a 600+ core system.  Once prototyping is complete we 

will be attaching the front end of a simple game/virtual 

environment and conducting experimentation aimed at assessing 

and enhancing runtime performance; determining trade-offs on 

cell size, entity performance, and AoI; and experimenting with 

the DCAA. We are developing example simulations within the 

Java-based multiagent simulation framework MASON [20].   
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