
Domain Specific Analysis and Modeling of Optimal
Elimination of Fitness Functions with Optimal Sampling

Gautham Anil
School of Electrical Eng. & Computer Science

University of Central Florida
Orlando, FL, USA

ganil@cs.ucf.edu

R. Paul Wiegand
Institute for Simulation & Training

University of Central Florida
Orlando, FL, USA

wiegand@ist.ucf.edu

ABSTRACT

This paper extends previous work that presented an al-
gorithm called Optimal Elimination of Fitness Functions
(Oeff). Oeff is by itself conditionally optimal over all
problem classes, albeit impractical. Here, we complement
this algorithm with an optimal sample selection strategy
that removes the condition. Consequently, the performance
of this combined algorithm over a domain is the black-box
complexity of that domain, providing a new technique for
deriving black-box complexity.

Additionally, we suggest techniques to perform runtime
analysis of our extended Oeff algorithm. We discuss how
those techniques can be used to build an algorithm that
is targeted, practical, yet equivalent to Oeff with optimal
sampling over the target domain. This is demonstrated on
the Generalized Leading Ones problem domain, where we
derive black-box complexity and develop an optimal algo-
rithm.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems;
G.1.6 [Numerical Analysis]: Optimization

General Terms

Theory, Algorithms, Performance

Keywords

Black-box optimization, leading ones, elimination of func-
tions

1. INTRODUCTION
Randomized search heuristics such as evolutionary algo-

rithms (EAs) are often applied quite generally to a wide
variety of problem classes. It’s tempting to think of such
methods as relatively problem independent, but of course

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

this is not really so. For example, EAs that use binary
representations typically employ operators such as bit-flip
mutation that introduce very specific domain assumptions,
and they obviously perform better on some problems than
on others. Given a specific problem instance or well-defined
class of problems, runtime analysis [7] can be used to ob-
tain performance bounds in terms of measures such as the
expected number of evaluations before the optimum is first
sampled or the probability of success within a given number
of evaluations. Still, it’s often useful to understand what
kind of performance is possible on a given problem class in
order to have a context for such analysis.

Indeed, randomized search heuristics such as EAs can
be seen as a subset of (unrestricted) black-box optimization
methods—those in which a design engineer is permitted to
know the problem class a priori but not the instance, and in
which optimization consists of sampling the unknown func-
tion repeatedly until a solution (optimum) can be identified.
In some cases, it is possible to compute the black-box com-
plexity [4] of some class of problems in terms of the num-
ber of function evaluations of the target function that are
sufficient and necessary for a black-box algorithm to unam-
biguously identify an optimum. While the No Free Lunch
theorem [10] dims näıve hopes of obtaining reasonable per-
formance bounds when an algorithm contains or is given no
information about the problem class, in general most prob-
lem classes have some kind of problem structure that can be
exploited [9].

Because most existing algorithms implicitly embed their
domain knowledge within the process of the algorithm itself,
it’s not always clear exactly how or what is being exploited
(or isn’t). With this in mind, [1] constructs a method that
explicitly separates the general process of search dynamic,
sample selection, and domain knowledge. They describe
a general search method, Optimal Elimination of Fitness
Functions (Oeff), that is optimal over any problem class
given some sample sequence and complete domain knowl-
edge. Optimality in their case is expressed in terms of the
required number of evaluations of the unknown target func-
tion. The method can be used to gain insight about black-
box search or to construct black-box complexity bounds for
certain problem classes.

There are a number of unexplored questions with their
approach. For example, [1] considers random sequences of
samples, whereas clearly some sample sequences are better
than others for certain problems. Additionally, the algo-
rithm described is an analytical foil and not at all realistic,
requiring exponential space and time to manage “domain

2067

knowledge”. Recognized but not implemented in that work
is the observation that when there are regularities to ex-
ploit in the problem class, the domain knowledge required
by Oeff for that class may be managed more efficiently
with reduced space and time requirements. Indeed, for some
problem classes there exist simple, practical random search
heuristics that behave equivalently with Oeff given an opti-
mal sample sequence. Showing that such an algorithm exists
is tantamount to demonstrating the unrestricted black-box
complexity for some problem class. When it is possible to
elicit such an algorithm, we have reason to argue that that
algorithm is an optimal black-box optimizer.

This paper addresses these issues in two key ways. First,
we extend the analytical framework suggested by Oeff by
describing a general and straightforward method for select-
ing samples optimally. Second, we demonstrate for a par-
ticular, highly structured problem class (a generalization of
LeadingOnes) that there exists a simple, realistic algorith-
mic process that behaves equivalently to Oeff using opti-
mal sample selection. Our bounds are consistent with known
black-box bounds for the class we consider [4]. The result in
this case demonstrates the power and utility of an analytical
approach that conceptualizes the general search dynamic,
sample selection, and domain knowledge separately. Not
only can one implement an optimal algorithm for this class,
but when approached in this way it becomes clear that this
optimal GeneralizedLeadingOnes search method embeds
all relevant domain knowledge into the search process itself.

In the next section, we explain the background for this
work in more detail, including some notational preliminar-
ies, a discussion of a variety of approaches to investigating
the black-box complexity of problem classes, Oeff, and our
optimal sample selection for Oeff. In Section 3, we discuss
how Oeff with optimal sample selection can be modeled in
order to show equivalences. The penultimate section pro-
vides our analysis of GeneralizedLeadingOnes, in which
an optimal algorithm for this class is presented. Finally, we
will discuss our conclusions and future work.

2. BACKGROUND

2.1 Notational Preliminaries
This work considers optimization of functions that map

from some discrete sample space S into real values. When
maximizing, the goal is then to find some ŝ such that ŝ =
argmaxs∈S f(s), where f : S 7→ R, and likewise for mini-
mization we look for ŝ = argmins∈S f(s). We refer to the
situation in which we are asked to find the optimum of a
specific, unknown function as a problem instance and de-
note the unknown function as u. We use the term prob-
lem class to describe a known, discrete set of functions
F := {f1, f2, . . . , f|F |}, where |F | describes the cardinality
of the function set.

We consider the complete domain knowledge of some class
to be the mapping 〈F, S〉 : F × S 7→ R where ∀f ∈ F,∀s ∈
S, 〈F, S〉(f, s) = f(s). This complete domain knowledge is
essentially a vast table with as many rows as there are func-
tions in the function set, as many columns as there are sam-
ples in the sample space, and in which each cell represents
the objective value for a given function applied to a given
sample.

We use the notation 〈Fi, Sj〉 where Sj ⊆ S and Fi ⊆ F to
indicate a stage in the middle of the search process where

we may have gained more information about the unknown
function being optimized than we had in the beginning of
the process. Sometimes shorthands such as Fi may be used
for 〈Fi, Sj〉 for simplicity where appropriate.

Although most of the discussion in this paper assumes
only that the search space S is finite, our example focuses
on a problem class in which the search domain is the set
of binary strings of length n. In such cases when s is a
sequence of bits, we use the notation s[i . . . j] to indicate a
subsequence of s starting from i > 0 up to and including j.
Further, in the problem class of interest to this paper, all
functions have a unique solution, and f [i . . . j] indicates a
subsequence of the solution of f . Used alone, [. . .] indicates
an ordered sequence whose contents can be accessed by index
just like s.

Lastly, Su indicates the subset of unsampled search points,
and the u in the subscript should not be confused with the
target function, u : S 7→ R.

2.2 Black-Box Complexity
In black-box optimization, randomized search heuristics

must optimize some unknown target function from a known
class of functions. The algorithm may sample the unknown
target function by selecting elements from the sample space
according to some distribution, compute the objective value
of this sample on the unknown target function u(s), update
the probability distribution of the solution over the sample
space, and repeat the process. Such a framework encom-
passes a wide variety of algorithms, including EAs. One
may be interested in a number of performance factors in
black-box optimization, but in this paper we focus on the
expected number of times the unknown target function must
be sampled before the global optimum is first discovered (the
expected first-hitting time).

While ignorance of which instance we are solving is cer-
tainly a hindrance, clearly knowledge of the class of prob-
lems can be quite informative. For example, if we know that
our problem class is the set of all linear functions of binary
strings, then we know that probing each bit one at a time
is sufficient to solve any problem. In other words, we can
conclude that no algorithm that knows it is solving some
instance from the class of linear pseudo-Boolean functions
should require more than n+ 1 function evaluations to find
the optimum, where n is the length of the string. From
this observation, it’s natural to consider the complexity of
problem classes themselves. In particular, we consider the
black-box complexity of a problem class to be the expected
first-hitting time of the worst case of the best algorithm for
that problem class [3].

This black-box scenario is an unrestricted case in the sense
that there are no constraints on how samples are selected or
how search is directed by those samples. The class of al-
gorithms that meet this constraint is quite broad, and it’s
reasonable to observe that most randomized search heuris-
tics used in practice fall into a much narrower spectrum.
Moreover, existing black-box complexity bounds for certain
classes of problems suggest more optimism than performance
bounds for specific algorithms on the same class allow. For
example, the expected first-hitting time for the (1 + 1) EA
on linear functions with non-zero weights is Θ(n log n) [3],
whereas (as just observed) the black-box complexity for that
class has an upper bound of n + 1. Another example is
that of a generalized version of LeadingOnes, where the

2068

function rewards strings for the length of prefix positions
that precisely match the prefix of an unknown target string.
The black-box complexity for this class is bounded above
by n/2 + o(n) and below by n/2− o(n) [3], while most EAs
that use only bit-flip mutation will require at least Ω(n log n)
evaluations, and the (1+1) EA has an expected first-hitting
time of Θ(n2) [3].

Because of this, it is sometimes useful to consider a nar-
rower black-box scenario. For example, [6] observe that
many EAs employ only some form of mutation, and thus
a broad class of algorithms may be established in which
we permit only those that employ operators that produce
new sample points in ways that are symmetric with respect
to the position of a gene. They call this scenario unbiased
black-box complexity and produce results for some problem
classes on an even narrower subset of such algorithms in
which an algorithm’s search operator can make use of infor-
mation from at most one other previously sampled point to
choose the next sample point (unary operators). This idea
is generalized to unbiased black-box complexity given algo-
rithms that employ k-ary operators by [2], and from these
notions one can clearly obtain bounds on problem class com-
plexity that compare more meaningfully to results for many
EAs. For example, [6] shows us that the unary unbiased
black-box complexity of generalized LeadingOnes is Θ(n2)
and [2] shows us how this biased problem complexity drops
to O(n log n) when algorithms are permitted to use k-ary
operators for k > 1.

Still, our interest is in examining what is optimistically
possible (and not possible) given free access to the infor-
mation in the problem class itself. Since restrictions on how
samples can be selected by black-box search heuristics trans-
late directly into restrictions on what kind of information
the algorithms can make use of from the domain, unbiased
black-box optimization is not appropriate for our study. It’s
worth noting that a variety of known EAs do not meet these
bias restrictions, such as decompositional approaches like co-
operative coevolutionary algorithms [8] or approaches that
use explicitly asymmetric mutation operators [5]. Moreover,
the optimal algorithm described at the end of this paper for
solving the GeneralizedLeadingOnes problem is a simple
randomized search heuristic in the spirit of most EAs and is
not an unbiased black-box algorithm as defined by [6].

2.3 Optimal Elimination of Fitness
Functions

The construction of most randomized optimization meth-
ods involve identifying and using domain knowledge to em-
bed strategies and heuristics that leverage that knowledge.
Given this, it is intuitively natural to form the perspective
that the search algorithm itself must sacrifice performance
on a wider problem class in order to increase performance
on some target problem classes. But another view admits
the possibility that search dynamics can be governed by a
quite general algorithm, and domain knowledge and sam-
ple selection treated explicitly rather than as integrally a
part of the search algorithm itself. Indeed, [1] introduce the
idea of such a general search algorithm that is optimal over
all problem classes: Optimal Elimination of Fitness Func-
tions(Oeff). They specifically describe a simplified version
of Oeff for problem classes that contain only functions with
unique optima.

Oeff on the other hand stipulates that the complete do-

main knowledge about the target domain be made available
in a specific form before execution. It then achieves optimal-
ity over the target domain by using this data fully during
execution to identify the solution of the unknown fitness
function.

Viewed this way, Oeff is no different from a very spe-
cialized algorithm as both concepts have similar access to
domain knowledge. The difference lies in the fact that Oeff

processes this data during runtime while the specialized al-
gorithm already contains processed domain knowledge in al-
gorithmic form.

The form in which Oeff accepts this domain knowledge
is similar to a table of fitness values. This table has as many
rows as there are fitness functions in the target problem class
and as many columns as there are sample points. The fitness
value that is assigned by each fitness function to each sample
point is present in the corresponding cell. All the fitness
values in these cells form the complete domain knowledge of
the problem class. Despite a total lack of insightful heuristics
for searching through this domain, the domain knowledge is
complete because all those heuristics can be mined from this
domain knowledge.

Oeff is given as Algorithm 1.

Algorithm 1 Oeff(F ,S,u)

k ← |F |
boolean[|S|] E ← [false, . . . , false]
while k > 1 do {Eliminate until only one left}
x← NextSample()
utemp ← u(x)
for i = 1 to |F | do

if E[i] = false then

f ← F [i]
if f(x) 6= utemp then

E[i]← true
k ← k − 1

end if

end if

end for

end while

for i = 1 to |F | do {Identify survivor}
if E[i] = false then

f ← F [i]
end if

end for

{Find its solution using the domain knowledge}
umax ← 0
for j = 1 to |S| do
ftemp ← f(S[j])
if ftemp > umax then

umax ← ftemp

usoln ← S[j]
end if

end for

return usoln

The first loop in the algorithm is the main step, where
Oeff eliminates fitness functions from the problem class.
The program starts with no fitness function eliminated. First,
Oeff samples the unknown fitness function based on a sam-
ple selection logic. It then compares that fitness value with
the fitness value assigned by every un-eliminated fitness func-
tion in the problem class to that sample. Every fitness func-

2069

tion that assigns a different value is eliminated. A new sam-
ple is made. This process repeats until only one fitness func-
tion remains un-eliminated as it necessarily must. In cases
of problem classes where a solution may be shared by more
than one fitness function, to achieve optimality, we must
stop and return the solution when all un-eliminated fitness
functions have the same solution. This case is not covered
in Algorithm 1 for simplicity as we are concerned with a
domain where all fitness functions have unique solutions.
Once there is only one fitness function that has not been
eliminated, this must be the unknown fitness function. We
then proceed to identify the solution of this un-eliminated
fitness function using the table. This solution is returned as
the solution to the unknown fitness function.

Algorithm 1 requires only simple changes to make it opti-
mal even for the cases where solutions are not unique among
the objective functions. The only change required is that
at the end of the elimination stage, the solutions of un-
elimiated algorithms must be checked to see if all of them
share a solution. If they do, present that solution imme-
diately instead waiting until the function can be uniquely
identified. But we will ignore this variation as the problem
class we are interested in has unique solution.

It is clear that Algorithm 1 is exponential in both space
and time. Nevertheless, we believe it is impossible to write
an algorithm that takes a time that is polynomial on the
number of dimensions of the search space to process each
sample while being optimal over all problem classes. This
is due to the runtime requirement to process the domain
knowledge for each sample whose size is exponential on the
dimensions of the search space.

A notable missing piece of the above algorithm is the logic
of the procedure NextSample. In general, Oeff can use
any sequence of samples. The analysis presented in [1] as-
sumes Oeff uses a random sample sequence, and all com-
parisons between algorithms are made in terms of the given
sequence.

2.4 Optimal Sampling for OEFF

In this section, we introduce a method of selecting samples
for Oeff in a way that would minimize the expected num-
ber of future samples.An obvious method is straightforward
brute force. We can conceptualize this method by approach-
ing Oeff as a game with samples and the unknown fitness
function becoming branching points on the game tree. Then,
from the position on the game tree we are in, one chooses
the branch that would lead to the lowest expected distance
to the leaf nodes. The tree is shown in Figure 1 and the
formal description follows.

Let T〈Fi,Sj〉 be a game tree induced by some sets Fi ⊆ F
and Sj ⊆ S. This tree consists of two kinds of vertices
called f-set vertices labeled 〈Fi, Sj〉 and s-set vertices labeled
〈Fi, Sj , sk〉 where sk ∈ Sj .

The root of T〈Fi,Sj〉 is the f-set vertex labeled 〈Fi, Sj〉. Its
immediate children are s-set vertices ∀sk ∈ Sj , 〈Fi, Sj , sk〉.
The children of s-set vertex are f-set vertices labeled ∀u ∈
Fi, 〈OeffStep(Fi, sk, u), Sj − {sk}〉. The leaf nodes are the
f-sets where the first member of the label is a singleton set.

Note that the condition about the singleton set applies
only because the problem class has unique solutions for its
members. Otherwise, if we are using the variation of Oeff

that checks for common solutions, sets where all its mem-
bers have common solutions would also be valid leaf nodes.

〈Fi, Sj〉

〈Fi, Sj , s1〉

〈Fi, Sj , s|Sj |
〉

...

s1

s|Sj|

T〈OS(Fi,s1,u1),Sj−{s1}〉

T〈

OS(Fi,s1,u|Fi|
),Sj−{s1}

〉

...

u1

u|Fi|

...

u1

u|Fi|

· · ·

Figure 1: Illustration of game tree conceptualization

of Oeff and sample selection. Here OS refers to the

function OeffStep(F, s, u) := {f |u(s) = f(s), f ∈ F}.

However, this difference will not negatively affect the utility
of the analytical techniques that are presented.

The function OeffStep, given a set F of fitness functions,
a sample point s and the unknown fitness function u, returns
{f |f ∈ F, f(s) = u(s)}.

In this game tree, there exists an edge from an f-set for
every possible sample Oeff can make leading to an s-set.
Similarly, from an s-set 〈Fi, Sj , sk〉, there exists an edge for
every fitness function in Fi, leading back to an f-set. Figure 1
illustrates a portion of this tree.

The optimal sample selection algorithm is given as Al-
gorithm 2. This algorithm is given the current set of un-
eliminated fitness functions F and the set of currently un-
sampled points Su, and it returns a sample point that will
minimize the expected number of future samples.

Algorithm 2 NextOptimalSample(F ,Su)

if |F | = 1 then

return [0, false]
end if

lmin = |Su|
for all s in Su do

l← 0
for all u in F do

Ftemp ← OeffStep(F, s, u)

l = l +
NextOptimalSample(Ftemp,Su−{s})[0]+1

|F |

end for

if l < lmin then

lmin ← l
smin ← s

end if

end for

return [lmin, smin]

This algorithm explicitly searches T〈F,Su〉 looking for the
best sample. It is recursive, calculating average tree depth
at the second-level s-sets and then the root f-set after calling

2070

itself recursively to calculate depth at the third level f-sets.
The tree depth at a leaf node is 0. The tree depth at an
s-set vertex is one more than the average of the child f-set
vertices. The tree depth at a non-leaf f-set vertex is the
minimum of the tree-depths of its child s-set vertices, and
so on. This definition of tree depth aids us as it calculates
the minimum expected number of samples Oeff will need
before it terminates.

This sample selection algorithm is optimal in the sense
that it calculates the tree depths exactly and suggests the
sample at the second level with the lowest tree depth. How-
ever, it is obvious that this technique is exponential in both
space and time. Nevertheless, substantially more efficient
optimal sampling algorithms are unlikely since Oeff must
process the exponentially large domain knowledge for every
sample.

As noted before, we are interested in more than just pre-
senting the sample selection algorithm. We are interested
in how these two algorithms together can be used to create
optimal algorithms for certain problem classes.

3. MODELING OEFF AND OPTIMAL

SAMPLING
Next, we examine how we can use Oeff and optimal sam-

pling to create algorithms for specific problem classes. The
idea behind Oeff and optimal sampling is that if we know
the domain we are working on and that we are interested
in optimality over just that domain, then we can make use
of this information at design time rather than runtime. We
can study the behavior of the pair of algorithms on this spe-
cific table and possibly write a new algorithm with improved
time and/or space complexity that mimics the behavior of
Oeff and optimal sampling on that table.

The problem we will focus on is the previously presented
Generalized Leading Ones. But before we start, let us ex-
amine a couple of techniques that will help us simplify Oeff

and optimal sampling for a specific domain.

3.1 State Reduction
The first simplification is State Reduction. Note how

in Figure 1, the number of edges leading to child nodes from
an s-set vertex are numbered up to |F |. However, different
edges may lead to the same f-set that are duplicated in the
tree. This is because given a particular sample, different un-
known fitness functions can produce the same un-eliminated
set. In fact,

Observation 1. If for u ∈ F , Fu = OeffStep(F, s, u),
then ∀v ∈ Fu, Fu = OeffStep(F, s, v).

Thus, for many function classes, once we have access to
the table, there is opportunity for eliminating a large number
of potential nodes from the game tree. It is easy to see
that the reduction in states is increased when more fitness
functions share fitness values. For example, in the domain of
Generalized Leading Ones (see Section 4), half of all fitness
values are 0, half of all the rest are 1 and so on.

Also, there is another important property that helps with
state reduction. Let Su be the set of unsampled points.

Theorem 1. The tree depth from 〈Fi, Su〉 is independent
of Su.

Proof. Let us assume the contrary. Let Su, S
′
u ⊆ S such

that the tree depth of 〈Fi, Su〉 and 〈Fi, S
′
u〉 are different.

This means there exists a u ∈ Fi such that the path taken
by Oeff from 〈Fi, Su〉 to 〈{u}, S1〉 is w.l.o.g shorter than
the one from 〈Fi, S

′
u〉 to 〈{u}, S2〉 for some S1, S2 ⊂ Su. Let

X be the set of samples from the shorter path. For the other
path, Oeff would not have chosen a longer path if X could
have eliminated Fi−{u}. We must conclude that the ability
of X to eliminate Fi−{u} depends on more than u, Fi and
X itself. This is not true as f ∈ F − {u} will be eliminated
if ∃s ∈ X s.t. f(s) 6= u(s). Thus Oeff always takes the
same number of samples from 〈Fi, Su〉 to 〈{u}, S3〉 for any
S3 ⊂ Su ⊆ S.

Sample selection searches through the game tree described
before and thus is concerned with unsampled points. But
Oeff only uses tree depth during execution. Thus while
modeling Oeff, one is free to ignore previous samples and
thus reduce the number of states.

3.2 Symmetry
The other technique we use for modeling Oeff and sample

selection, particularly the latter, is the issue of symmetry

of samples.
As seen before, in the general case, the sample selection

algorithm needs to have access to the tree depth from each
sample to determine the best sample. However, in some
cases, it does not matter what the actual depth of the sub-
tree is because the depth of all possible subtrees is the same.
Thus the choice of sample is immaterial as one sample is not
better than any other. This eliminates the need to calculate
the tree depth to achieve optimality. This can hold even
if all samples do not have the same tree depth as we just
need to identify a set of samples with the same lowest tree
depth. Then the optimal sample selection strategy would be
to randomly select a sample from this set.

This is formalized below.

Definition 1. Two sets of fitness functions F1 and F2 over
a sample space S are said to be permutable with each other
if a one-to-one mapping ψ from S1 ⊆ S to S2 ⊆ S exist such
that,

∀f ∈ F1,∃g ∈ F2 s.t. ∀s ∈ S1, f(s) = g(ψ(s))

We will denote this as F1 ←→S1,S2
F2. We can also say

f permutes to g to express the one-to-one mapping between
F1 and F2.

Lemma 1. If F1 ←→S1,S2
F2, and if S1 and S2 consists

of all samples that may be selected for sampling for F1 and
F2 respectively, then F1 and F2 has the same tree depth.

Proof. We will prove the two trees isomorphic by induc-
tion. Consider T〈F1,S1〉 and T〈F2,S2〉. We know that for the
two root f-set vertices 〈F1, S1〉 and 〈F2, S2〉, ∀s ∈ S1, ψ(s) ∈
S2 and vice-versa and F1 ←→S1,S2

F2.
Let 〈Fi, Si〉 be a vertex in T〈F1,S1〉 and 〈F

′
i , S

′
j〉 be a vertex

in T〈F2,S2〉 such that Fi ←→Si,S
′
i
F ′
i . Consider the child f-set

vertices 〈OeffStep(Fi, sk, u), Si − {sk}〉 and
〈OeffStep(F ′

i , ψ(sk), u
′), S′

j−{ψ(sk)}〉 where u ∈ Fi and u
permutes to u′. For f in Fi and g in F ′

i such that f ←→Si,S
′
i

g, f(sk) = u(sk) iff g(ψ(sk)) = u′(ψ(sk)). Thus:
OeffStep(Fi, sk, u)←→Si−{sk},S

′
i
−{ψ(sk)}

OeffStep(F ′
i , ψ(sk), u

′).
Additionally, ∀s ∈ Si − {sk}, ψ(s) ∈ S

′
i − {ψ(sk)}.

Thus by induction, the two trees are isomorphic. Conse-
quently, their tree depths are the same.

2071

Theorem 2. Two subtrees 〈Fi, Su, s1〉 and 〈Fi, Su, s2〉
have the same tree depth if there exists a one-one mapping of
←→Su−{s1},Su−{s2} from every set present in the multi-set
{OeffStep(Fi, s1, u)|u ∈ F} to another set in the multi-set
{OeffStep(Fi, s2, u)|u ∈ F}.

Proof. Tree depth of subtree from a s-set vertex is cal-
culated by averaging the depth of child f-set vertices (see
Figure 1) and adding 1. Because of the mapping, for ev-
ery subtree depth that we average for s1, there is a subtree
from s2 with the same depth because of Lemma 1. Thus the
averaged values are identical. Consequently, the tree depth
from branches selected by s1 and s2 are the same.

4. ANALYZINGGENERALIZEDLEADING

ONES
Now we can use these two techniques on Generalized Lead-

ing Ones in an attempt to simplify and analyze it.

4.1 Generalized Leading Ones
We consider a particular generalization of the pseudo-

Boolean LeadingOnes problem class (abbreviated here as
Glo). For a space of binary sequences of length n, Glo can
be defined as follows.

Glox̂(x) =
n
∑

i=1

i
∏

j=1

(xi ≡ x̂i) (1)

where x̂ is a sequence of length n hidden in the fitness func-
tion. As there are 2n unique strings in the search space,
with each of them as a unique hidden sequence, there are
2n unique fitness functions in Glo each of them having a
unique solution. Put simply, a fitness function in Glo re-
turns the length of the longest prefix common between the
sample point and the hidden sequence.

The fitness function for Glo is characterized by large
plateaus that make it hard for a randomized search algo-
rithm to optimize locally. These large plateaus occur be-
cause changes outside the shared prefix do not influence the
fitness value.

Even though some simple EAs can only achieve Θ(n2)
over Glo, there exists an obvious algorithm that can achieve
exactly n: simply flip bits one at a time. It is given as Algo-
rithm 3, where f is the fitness function and on termination,
the solution lies in x.

Algorithm 3 Solving Glo one bit at a time

binary[N] x← [0, . . . , 0]
for i = 0 to N − 1 do

if f(x) = i then
x[i]← 1

end if

end for

4.2 Building the model
Let F ′ = OeffStep(F, sk, u). For doing state-reduction,

using Theorem 1 and the defintion of Glo, we make this
observation about Oeff on Glo.

Observation 2. ∀si ∈ S such that u(si) ≤ u(sk),
OeffStep(F ′, si, u) = F ′

One can come to the same conclusion from observing the
fitness table of Glo. From the definition of Glo, we know
that this is because the fitness function in Glo returns the
length of the longest shared prefix common to both the sam-
ple point and the solution of the fitness function. As the
fitness functions Oeff has not eliminated must also share
this prefix, a sample with a shorter prefix cannot eliminate
them.

In Glo, as there are exactly n + 1 unique fitness values
being returned by every function, from Observation 2 we
can conclude that for a given unknown, a maximum of n+
1 different elimination sets can be formed by Oeff. But
different unknowns may form different elimination sets.

Consider a set F si containing fitness functions sharing a
prefix of length i where s is the sample that produced it. As
explained later in Equation 3, u(s) = i − 1. Let us define
F si as follows.

F si =

{

f

∣

∣

∣

∣

f ∈ F,
f [1 . . . i] = u[1 . . . i] = s[1 . . . i− 1]s̄[i]

}

(2)

where u[i . . . j] is the subsequence of the solution of u (as u
has a unique solution), from index i > 0 up to and including
j. The set F si for 0 ≤ i ≤ n and s ∈ {0, 1}n form all the
possible sets of un-eliminated fitness functions.

There is no transition from any F sii to any F
sj
j for j < i as

F
sj
j ⊃ F

si
i if si[1 . . . j−1] = sj [1 . . . j−1] and F

sj
j ∩F

si
i = ∅

otherwise. There is a transition for j > i iff u(sj) = j − 1.
This can be written as follows,

OeffStep(F bi , s, u) =

{

F bi u(s) < i
F su(s)+1 u(s) ≥ i

(3)

This reduction in states results in a new tree given in
Figure 2. Let us examine how optimal sample selection be-
haves in this tree. For an arbitrary state F bii , we will at-
tempt to identify the set of optimal samples which we will
prove symmetrical. Consider a sample s such that s[0 . . . i] 6=
bi[0 . . . i− 1]b̄i[i]. As u(s) < i, the state will remain Fi. Let,

Sbii =

{

s

∣

∣

∣

∣

s ∈ {0, 1}n,
s[0 . . . i] = bi[0 . . . i− 1]b̄i[i]

}

(4)

Consider any two samples s1, s2 ∈ S
bi
i . For an arbitrary

u1 ∈ F
bi
i , let d1 = u1(s1) + 1.

OeffStep(F bii , s1, u1) = F s1d1 (5)

We know there exists u′
1 ∈ F

bi
i such that

u′
1(s2) = u1(s1) (6)

In fact,

Observation 3. ∀ui, ∃!u
′
i s.t. ui(s1) = u′

i(s2)

Additionally,

OeffStep(Fi, s2, u
′
1) = F s2d1 (7)

Theorem 3. F s1d1 ←→S
s1
d1
,S

s2
d1

F s2d1 .

Proof. Consider the map M where ∀y ∈ {0, 1}n−d1 we
map s1[1 . . . d1 − 1]s̄1[d1]y ∈ S

s1
d1

to s2[1 . . . d1 − 1]s̄2[d1]y ∈

Ss2d1 .

Let f ∈ F s1d1 . Choose f ′ ∈ F s2d1 such that f [d1 . . . n] =

f ′[d1 . . . n]. Let s3 ∈ S
s1
d1
. It is clear that f(s3) = f ′(M(s3)).

2072

In other words, f permutes to f ′. The theorem follows from
Definition 1.

Additionally, from F s1d1 , we will not choose a sample point

outside Ss1d1 . Similarly for F s2d2 . We also know from Observa-

tion 3 that the number of F s1d1 formed by ui are the same as

the number of F s2d1 formed by u′
i. Thus, from Theorem 2, it

follows that all the samples in Sbi are symmetrical and have
the same tree depth.

Thus the best sample selection strategy from Fi would be
to randomly pick a sample from Sbii .

We cannot benefit from Theorem 1 to reduce states further
for Oeff since, due to the property of Glo, we already
ignore all prior samples.

F sii

s1

s2

F
si
i

F
s1
i+1 · · · F

s1
d1

· · · F
s1
d1

· · · F s1
n

u1
ux

F
s2
d1
· · · F

s2
d1

u′
1

u′
x

Figure 2: Game tree of OEFF for GLO after state-

reduction. Two levels from an arbitrary node FSi
i is

shown.

4.3 Analysis
We can now analyze the behavior of this simplified model

and attempt to calculate the black-box performance of Glo.
From an arbitrary state F bii , we randomly pick a sample

from Sbii . This sample shares a prefix of length i with the
solution. The probability of the i + jth bit being the first
wrong bit is 1

2j
for j ≥ 1. Thus the probability of getting a

new fitness i+ j − 1 is also 1
2j
. Equation 3 tells us that this

is also the probability of transitioning to state Fi+j . Using
these probabilities to calculate the expectation of j given m
higher states,

Em(j) =
m
∑

i=1

i

2i

= 2−
m+ 2

2m

For large n, m can also be expected to be large.

lim
m→∞

Em(j) = 2

Thus for large n, the expected number of samples Oeff

with optimal sampling will take to solve Generalized Leading
Ones is n

2
. As the number of samples is a random variable

that is a sum of as many independent random variables with
finite variance, by law of large numbers, the variance on the
black-box complexity approaches 0 for large n. We conclude
that this is the exact black-box complexity of Generalized
Leading Ones.

An algorithm modeling the behavior of Oeff with optimal
sampling can achieve this bound with linear space and time
complexity. This is given as Algorithm 4. The function
Random returns a random binary sequence of length n.

Algorithm 4 OptimalGlo(u)

binary[n] s← Random(n)
fbest ← u(s)
while fbest < n do

s[fbest + 1]← s̄[fbest + 1]
if fbest = n− 1 then

break

end if

s[fbest + 2 . . . n]← Random(n− fbest − 1)
fbest ← u(s)

end while

return s

5. DISCUSSION
We have presented an optimal sampling strategy for the

Oeff algorithm. With the help of this sampling strategy,
Oeff is a general search method that is optimal over all
problem classes given complete domain information. We
argue that by modeling Oeff and optimal sampling for a
specific problem class, we can design algorithms that are
equivalent in behavior, yet avoids the space and time penal-
ties associated with managing domain knowledge externally.
We presented a few techniques that can help with the process
of modeling. These tools were used to model the behavior of
optimal sample selection strategy and Oeff on a well known
problem class called Generalized Leading Ones. This model
results in a linear expected number of samples required to
solve an unknown fitness function from Glo. This confirms
the black-box complexity of Glo.

Our bound for the expected first-hitting time for Algo-
rithm 4 is consistent with the general black-box complexity
shown in [4]. In fact, the sampling strategy they consider
for establishing these bounds is equivalent to Algorithm 4,
and it’s clear that when one considers success probabilities
for our algorithm, the bounds from [4] also hold— it is lower
bounded by n/2 − o(n) and upper bounded by n/2 + o(n).
While their analysis concerns an abstract process for the
purposes of establishing unrestricted black-box complexity
bounds, we present a specific and simple algorithm that at-
tains these bounds. Moreover, because we have shown that
this is equivalent to Oeff using an optimal sampling strat-
egy, we know that this simple algorithm embeds all relevant
domain knowledge for this problem class.

Of course, one might have translated the proof used in [4]
into an algorithm; however, this is not usually feasible as
rarely do optimal algorithms result from deriving the black-
box complexity of a domain. We feel the process of modeling
Oeff and optimal sampling may lead to promising methods
for designing a practical optimal algorithm for a given do-
main, when one exists.

2073

Another advantage of using Oeff and optimal sampling
for deriving black-box complexity is that it provides a single
approach for any problem class. The techniques presented in
Section 3 are applicable while modeling any problem class.
This may simplify the derivation of black-box complexity for
some problem classes.

A definite prerequisite of Oeff and any derived algorithm
is complete domain knowledge. If domain knowledge is not
complete, optimality and/or accuracy of Oeff cannot be
guaranteed. However, we are frequently interested in situa-
tions where domain knowledge is incomplete. If the domain
knowledge that we have can be represented as a probabil-
ity distribution over all possible problem classes, then, the
optimal algorithm may be a combination of Oeff applied
to individual problem classes for all problem classes with
non-zero probability.

Oeff reminds us that the process of designing an algo-
rithm requires gathering the domain knowledge that exists
as objective functions and converting it to search heuristics
implemented in an algorithm. The efficiency of a manual
algorithm design process can be improved, if it is analyzed
with this requirement in mind.

A way to interpret the table of fitness values that Oeff

uses during search is as a large number of parameters. This
makes Oeff simply a heavily or even the most parameter-
ized algorithm. An important lesson is that domain knowl-
edge does not have to be part of the algorithm substantially
as search heuristics. It is possible to design algorithms that
are more heavily parameterized. From Oeff, we know that
such algorithms can gain performance over larger number of
domains at the cost of execution time between samples.

Heavily parameterized algorithm may make runtime gath-
ering of domain knowledge easier. Though not a new con-
cept, it has not been applied to heavily parameterized algo-
rithms.

As presented here, the transition from Oeff to the algo-
rithm that models it is made manually. However, it is con-
ceivable that for a restricted set of problem classes, an auto-
mated process can study the formal description of the prob-
lem class and derive a non-trivial algorithm that is equiva-
lent to Oeff and optimal sampling. This is an interesting
possibility that hints at automated design of targeted algo-
rithms for specific problem classes.

In conclusion, we feelOeff is a very informative algorithm
giving us new ideas about performance prerequisites and
runtime domain knowledge gathering. Oeff defines a new
dimension of algorithms that are heavily parameterized and
informs us about the trade-offs in this dimension.

Additionally Oeff and optimal sampling is a promising
tool that among other things, can be used for deriving black

box complexity of problem classes and designing efficient
algorithms that are optimal over specific problem classes.
But more attempts at using this tool will be needed before
we can be sure of its applicability.

6. REFERENCES
[1] Gautham Anil and R. Paul Wiegand. Black-box

search by elimination of fitness functions. In FOGA
’09: Proceedings of the tenth ACM SIGEVO workshop
on Foundations of genetic algorithms, pages 67–78,
New York, NY, USA, 2009. ACM.

[2] Benjamin Doerr, Daniel Johannsen, Timo Koetzing,
Per Kristian Lehre, Markus Wagner, and Carola
Winzen. Faster black-box algorithms through higher
arity operators. In FOGA, page (unknown), 2011.

[3] Stefan Droste, Thomas Jansen, and Ingo Wegener.
Optimization with randomized search heuristics: the
(a)nfl theorem, realistic scenarios, and difficult
functions. Theor. Comput. Sci., 287:131–144,
September 2002.

[4] Stefan Droste, Thomas Jansen, and Ingo Wegener.
Upper and lower bounds for randomized search
heuristics in black-box optimization. Theor. Comp.
Sys., 39(4):525–544, 2006.

[5] Thomas Jansen and Dirk Sudholt. Analysis of an
asymmetric mutation operator. Evol. Comput.,
18:1–26, March 2010.

[6] Per Kristian Lehre and Carsten Witt. Black-box
search by unbiased variation. In GECCO, pages
1441–1448, 2010.

[7] P.S. Oliveto, Jun He, and X. Yao. Time complexity of
evolutionary algorithms for combinatorial
optimization: A decade of results. International
Journal of Automation and Computing, 04(3), 2007.

[8] Mitchell Potter and Kenneth De Jong. A cooperative
coevolutionary approach to function optimization. In
Yuval Davidor, Hans-Paul Schwefel, and Reinhard
Männer, editors, Parallel Problem Solving from Nature
- PPSN III, volume 866 of Lecture Notes in Computer
Science, pages 249–257. Springer Berlin / Heidelberg,
1994.

[9] C. Schumacher, M. D. Vose, and L. D. Whitley. The
no free lunch and problem description length. In
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001, pages
565–570. Morgan Kaufmann, 2001.

[10] D.H. Wolpert and W.G. Macready. No free lunch
theorems for optimization. IEEE Transactions on
Evolutionary Computation, 46:35–57, 1997.

2074

