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ABSTRACT

In black-box optimization an algorithm must solve one of
many possible functions, though the precise instance is un-
known. In practice, it is reasonable to assume that an al-
gorithm designer has some basic knowledge of the problem
class in order to choose appropriate methods. In traditional
approaches, one focuses on how to select samples and direct
search to minimize the number of function evaluations to
find an optima.

As an alternative view, we consider search processes as
determining which function in the problem class is the un-
known target function by using samples to eliminate candi-
date functions from the set. We focus on the efficiency of this
elimination process and construct an idealized method for
optimal elimination of fitness functions. From this, we place
our technique in context by relating performances of our ide-
alized method to common search heuristics (e.g., (1+1) EA),
and showing how our ideas relate to No Free Lunch theory.
In our discussion, we address some of the practicalities of
our method.

Though in its early stages, we believe that there is utility
in search methods based on ideas from our elimination of
functions method, and that our viewpoint provides promise
and new insight about black-box optimization.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems;
G.1.6 [Numerical Analysis]: Optimization

General Terms

Theory, Algorithms, Performance

Keywords

Black-box optimization, evolutionary algorithms, elimina-
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1. INTRODUCTION

A traditional view of the optimization process of a ran-
domized search heuristic such as evolutionary computation
is one in which a sequence of samples from the search space
is used to determine future samples in order to chart an
efficient course toward some global optimum. Like any opti-
mization method, it is often useful to bound the number of
samples that can be expected before the optimum is found
as it relates to the problem size. Indeed, there are a number
of such runtime analyses for certain types of evolutionary
algorithms (EAs) on particular problems (see, for example,
[4, 10] and [7] for a survey).

Of course for a particular instance of an optimization
problem, one typically needn’t even apply an EA: if we know
the precise function, we often already know the answer. E.g.,
If we know the domain is OneMax, as there is only one
fitness function, then we know the solution is always the
all-ones string and we can just return it without doing any
sampling. A slightly more subtle point is that for the set
of all problems, an EA is no better or worse than any other
method (see NFL [11]).

Indeed, evolutionary algorithms are black-box methods:
We apply them in the case where we are asked to solve one
of many possible problems, though we do not know the pre-
cise instance. In fact, Droste et al. [3, 2] make the com-
pelling case that our real interest is in understanding how
these optimization methods perform over various classes of
problems. The natural point here is that it is reasonable to
assume that this class is not the entire space of all prob-
lems, and that an algorithm designer may have (at least)
some basic knowledge of the problem class in order to chose
appropriate methods.

We agree. In fact, this observation suggests an alterna-
tive view of black-box optimization methods: Rather than
see these systems as using samples to find the optimum, one
can turn the view around and consider search processes as
using the samples to help determine which function in our
problem class is the target function of the problem. This
shift in perspective allows us to consider each step in the
search process as a sorting activity, using samples to parti-
tion the function set into functions that can be definitively
eliminated as the target problem and those that (as yet)
cannot be eliminated. The entire process, then, becomes
a series of decisions about how to refine our knowledge of
these sets given samples from the search space, and analysis
can focus on whether such algorithms make the most of the
potential information available to them given knowledge of
the problem class.
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When one considers this view, several new questions come
to light. What kind of guarantees can we make about how
search methods approach this elimination activity? How do
traditional methods use the information provided by their
samples to implicitly eliminate functions from the function
set (or do they)? We can also posit idealized methods for ex-
plicitly searching by optimal elimination of fitness functions
(OEFF), and we can relate the performance of various meth-
ods to this standard on particular problem classes. Finally,
we can recast existing theories in terms of OEFF.

In this paper, we introduce such a view and discuss what
can be learned by adopting it. We also outline OEFF and
prove that it meets the known black-box lower bound for a
problem class involving a particular generalization of OneMax

under idealized circumstances, then illustrate this experi-
mentally. We then place our work in context of what is
already known by first demonstrating how OEFF can be
used verify the well-known NFL result for problem classes
closed under permutation[8]), how the (1+1) EA and a sim-
ple variant can be viewed as performing an implicit elimi-
nation of fitness functions, and how greedy sampling affects
function elimination. We conclude with a short discussion
of how these ideas can be used more generally for analysis
purposes, as well as suggest several ways to find practical
implementations of our OEFF method.

However, as a note of caution, we do not present this tech-
nique in this form as a practical search strategy. Our goal
in developing OEFF is to explore the performance bounds
on black box search in the presence of perfect a priori in-
formation about any domain. Our analysis centers on the
question: How well can (and do) algorithms leverage what
knowledge is available from the problem class? We feel this
model might be useful for analysis of search strategies and at
best, an inspiration for designing new ones. We believe this
tool provides a better understanding of the dynamics and
limits of black box optimization and a clearer perspective
on the process of optimization.

2. ELIMINATION OF FITNESS

FUNCTIONS

Consider a search space X and a class of functions F ⊂
{f : X �→ R}. A black-box algorithm is presented a par-
ticular target function from that class to optimize, though
which function is unknown to it a priori. The traditional
goal of such algorithms is to sample the search space and
determine a search point that optimizes the unknown func-
tion. Without loss of generality, we consider maximization:
given some u ∈ F find x̂ = argmax

x∈X u (x). We write
a sequence of k search points sampled by the algorithm as
Xk := �x1, x2, . . . xk�, where X0 := � �.

The information in such a sequence of samples can also be
used to try to determine which of the functions in F matches
the target function u. Information from the samples parti-
tions the function set into those functions that remain can-
didate matches for the target function and those that can
be definitively eliminated as the current problem instance.
Indeed, it’s possible to view virtually any black-box opti-
mization algorithm as attempting to perform this kind of
elimination of fitness functions (implicitly or explicitly).

With this view, we can characterize an algorithm by the
process that it uses to perform this partitioning. Our frame-
work uses the notation R(Xk, u) to refer to this characteri-

zation. R describes the set of functions that remain (cannot
be eliminated) as candidate matches to the target functions
given a sample sequence. R(Xk, u) is also written as R(k).
Different algorithms can be described by different methods
of updating R.

2.1 Ideal Domain Knowledge

The major motivation that underlies our change in view
is the assumption that the person designing an optimization
method for the problem class (the engineer) knows some-

thing about that class, and that with this knowledge they
have the opportunity to construct better methods.

This assumption is not unusual or unreasonable. EA prac-
titioners construct all manners of variations of evolutionary
methods in both principled and ad hoc ways in order to
gain some advantage on the type of problem for which they
are focused. Indeed, a well-known view of EA operators is
that they define the topology connecting search points in a
space, which is why some genetic operators in traditional
EA methods do better on some problems and worse on oth-
ers. Indeed, often practitioners perform simple parameter
tuning before making a serious attempt to solve the prob-
lem. Obviously, knowing something about F could help of-
fload any operator analysis — ideally, we would construct the
most generally productive operators for the problem class in
which we are interested.

Variations of traditional methods concentrate on the no-
tion of determining where to best sample a search space, but
one can also apply domain knowledge to help identify the
target instance from the problem class. For our purposes,
we consider ideal domain knowledge to be the complete, a

priori knowledge of the fitness values of all search points for
all functions in the function class, as well as the solutions
to each of those functions. This is a fairly broad and ideal-
istic view of the notion of “domain knowledge”. Abstractly,
the reader can imagine that before the function elimination
process begins, the algorithm is given a vast table with as
many rows as there are functions in the domain and as many
columns as the size of the search space. This table already
possesses pre-evaluated fitness results, from which we can
easily pre-compute the correct solution for each fitness func-
tion. This concept of ideal domain knowledge allows us to
study search performance under conditions of optimal infor-
mation, which cannot exist without this table.

For many problem classes, the solutions to functions are
implicit given the instance (e.g., Generalized OneMax class
discussed later) and the solution need not be explicitly stored.
Additionally, for many problem classes there are ways to
implicitly assume or approximate domain knowledge. How-
ever, there are certainly problem domains for which one or
both is not true, and we suffer no illusions regarding the
practicality of such assumptions for real and serious imple-
mentations.

For example, consider the Travelling Salesman Problem
(TSP) on n vertices. Assuming q possible values for each dis-

tance, there are q
n(n−1)

2 graphs (domain) and (n−1)! cycles
through the vertices (search space). Knowing the instance of
the problem does not imply knowledge of the solution, and
our conception of ideal domain knowledge insists we calcu-
late and store, a priori, all the solutions to a particular graph
and all the graphs for which a particular cycle is a solution.
With this information, if the graph is identified, we can im-
mediately find a solution for the same. But the question we
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are asking isn’t whether we can legitimately have access to
this information to solve TSP instances, but whether we can
use this idealism as a kind of “gold standard” for comparing
how real algorithms make use of domain knowledge.

2.2 Consistent Elimination of Functions

A variety of questions suggest themselves at this point.
For example, given a particular process, can we guaranty
that an algorithm’s partitioning process remains consistent?
That is, will we potentially eliminate functions at one point
in the sample sequence only to re-include it as a possible
candidate match later on?

Definition 1. A search process is inconsistent if ∃l > k, f̂
such that f̂ �∈ R(Xk, u) and f̂ ∈ R(Xl, u), otherwise the
process is consistent.

We also use the phrase “remains in R” to mean that an al-
gorithm never produces a partitioning later in the sampling
sequence that is inconsistent with an earlier partitioning.

Addressing consistency at the simplest level is straight-
forward: An algorithm that simply recognizes and returns
a global optima must be consistent. In fact, our view is
that such an algorithm is implicitly partitioning the prob-
lem class in the sense that in the abstract we might have
maintained a record of which functions in our set are still
candidates and not changed the underlying algorithm at all
other than to update this record each step.

Each step, our generic optimizer might partition the func-
tion set as follows. Let v̂ = max {u} and Ss be a partitioning
that uses a single sample to determine which functions must
remain un-eliminated based on whether or not the sample is
maximal.

Ss(xi, u)

=


{f |f ∈ F , f(xi) = v̂} if u(xi) = v̂
{f |f ∈ F , f(xi) �= v̂} otherwise

We can consider Rgeneric to be the (consistent) contents
of our record of candidate functions after some sequence:

Rgeneric (Xk, u) =
k\

i=1

Ss(xi, u)

Assuming the algorithm cannot return a result as the op-
timum that is not the optimum and that it must return the
optimum when found, such an algorithm must be consistent.
Indeed, our notion of “consistency” is very similar to Ficici’s
notion of monotonicity of solution concepts in interactive
(co-optimization) domains [5].

2.3 Optimal Elimination of Fitness Functions

Of course, it’s clear that an algorithm that remains in
R is not necessarily a good optimization algorithm. Our
real interest is the efficiency of a given elimination process:
Have we made as much use of the the samples we have seen
than we might have given ideal knowledge of the domain?
Or: Might we have chosen our samples such that better
partitioning would have been possible? This first question
is the focus in our paper, though the second is of serious
concern, as well.

From an elimination of functions point of view, the goal of
any algorithm should be to eliminate as many fitness func-
tions as possible with as few samples as is possible. Leaving

aside the issue of how samples are selected, the key question
is: Given u(x), what is the maximum number of fitness func-
tions that we can eliminate given a particular sequence of
samples and complete knowledge of the problem class fitness
space?

Definition 2. A function f ∈ F is incompatible with the

target function (or just incompatible) given some sample
search point xi if f(xi) �= u(xi).

A search process makes the most use of its sample se-
quence when it eliminates every incompatible function from
F with every sample1. Note that precisely how a search
process can determine that a function is incompatible de-
pends heavily on what kind of domain knowledge exists and
how it can be used.

As explained in section 2.1, we assume that all the points
in X have been pre-evaluated at all functions in F , and
that accessing particular values is computationally much less
expensive than evaluating the unknown target function. For
clarity, we use the notation V (j)

i
to mean the pre-computed

value of fj(xi), where fj ∈ F .
For practical applications this is unreasonable, but here it

focuses our attention on bounding the number of opportu-
nities an elimination algorithm has to reassess the problem
class partitioning. That only occurs when a new sample is
presented to the unknown target function.

Definition 3. A search method that explicitly or implic-
itly eliminates of functions from F is optimal if it’s parti-
tioning process can be described as follows:

R(0)

OPT
= ROPT (X0, u) = F

R(k)

OPT
= ROPT (Xk, u)

R(k+1)

OPT
= R(k)

OPT
−
n

fi|fi ∈ R(k)

OPT
, V (i)

k+1
�= u(xk+1)

o

When we speak of “optimality”of elimination, we are es-
sentially discussing the efficient use of information present
in the domain itself. Informally, a method that optimally
eliminates functions given some sampling strategy leverages
all possible domain knowledge to make the fewest possible
partitioning decisions. More specifically, let A be an opti-
mal search process that uses the smallest possible sequence
of generated samples required to report a correct solution.
Further, let OPT be the elimination process just described
operating with the same sequence of samples as A. Given
some prefix of the sample sequence, suppose OPT deter-
mines the correct solution for some problem instances, but
A’s prefix is insufficient for OPT in at least one other in-
stance. In such a case, there will be at least two functions in
ROPT that have the same fitness values for all the samples
seen so far, though they have different solutions. A will have
received the same fitness value results, thus even if A reports
an early potential solution from one of these two functions,
A has no information to distinguish them and the final re-
sult may or may not be correct. If A could certainly have
identified the correct solution, there must have been at least
one difference in the fitness values seen during the search, in
which case OPT will have eliminated the inconsistent func-
tion(s). In that sense, OPT cannot require more samples
1Stochastic functions are briefly addressed later.
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than A for any instance of a problem class and is optimal in
that sense.

This optimal elimination of fitness functions (OEFF) can
be viewed in several ways, and the viewpoints themselves
provide some interesting insight. For example, one useful
observation is that, while the specific sample values in a
given sequence certainly governs the possible efficiency of
such a process, the order of those samples is not important.
But our primary view of OEFF is as a standard for compar-
ison with other algorithms on the basis of fitness function
evaluation given ideal knowledge of the problem domain.

In essence, OEFF separates search into a generic optimal
search process and the more challenging issue of sample se-
lection. This separation allows us to analyze the effects of
different sampling strategies in terms of how they make use
of the domain knowledge present.

Indeed, OEFF can be used as an analytical tool to help
determine general black-box complexity bounds. In the sim-
plest case, an upper bound on a problem class for a given
sampling strategy may be derived. This can permit analy-
sis of the informative power of different sampling strategies,
and provides one possible valid black-box upper bound for
the problem class. We present just such an analysis in the
coming section for Generalized OneMax. In addition, when
a lower bound for a problem class for all sample sequences
can be determined, such a bound is a valid black-box lower
bound for the problem class and reflects what informational
efficiency is even possible for that problem. We use this
property later to demonstrate the consistency of OEFF with
No Free Lunch.

Note that these bounds ignore certain real-world practi-
calities (e.g., memory restrictions and the challenges of ac-
cessing and searching domain knowledge). Still, as we shall
see, though infeasible for realistic problems, OEFF can be
implemented. We will address some of the impracticalities
later.

We begin by considering an OEFF process that inspects
samples �x1, x2, . . .� chosen under uniform distribution from
X with no repetition. OEFF terminates when all the fitness
functions in Rk share at least one solution. We assume that
distinguishing between functions that have the same solution
is unimportant.

2.4 Theoretical bound for OEFF on
Generalized OneMax

Let us consider applying the OEFF on a common gener-
alization of the OneMax:

Definition 4. We refer to the generalized OneMax prob-
lem class as the class of pseudo-Boolean problems, f : {0, 1}n �→
R, where given some target string x̂ ∈ {0, 1}n:

OneMax
(x̂)(x) = n−

nX

i=1

|xi − x̂i|

There are several things to note about this problem class.
First, the class is not small — there are 2n possible candidate
functions in F , and each function can be uniquely identified
by its solution string. Second, the running time complex-
ity of a standard (1+1) EA on such a class is Θ(n lg n)[4].
Finally, the theoretical lower bound for any black-box algo-
rithm is known to be Ω (n/ lg n) [1], though the authors of
this proof remarked that they do not believe this to be tight.

Since we can identify a function by its solution string,

Figure 1: We can view the set of generalized
OneMax functions as a hamming space from the tar-
get function, u, and consider subsets of functions at
a particular hamming level, Kd.

we can also compute the hamming distance of each solution
string to the solution string of the target function. We use
this fact to construct hamming distance sets Kd, the parti-
tion of F generated by u based on hamming distances:

Kd = {f |f ∈ F , u(f) = d}

Let’s consider the question: What is the probability that
a particular function will be eliminated from from hamming
level, Kd, given some random sample x. First, we attempt
to find the condition under which u(x) �= f(x) for f ∈ Kd by
examining the following example. Let n = 8, u = 11111111
and f = 11110000. Thus, f ∈ K4. For u(x) and f(x) to
be the same, the number of bits in x that are the same as
u must be equal to the ones same as f . In the bit positions
where u and f are identical (the first four bit positions),
this is inevitable. Among the bits that are different, we
need half of them to be same as u and the rest f . E.g.,
if the last four bits are 0001 or 1110 etc., then u and f
can be differentiated and f will be eliminated. But if it is
0011 or 1010 etc., it is not possible to differentiate them.
This example makes it clear why any Kd where d is odd are
automatically eliminated with any sample: if f has an odd
number of bits equivalent in u, then x cannot be equidistant
from both u and f .

In general, when d is even, there are
`

d
d
2

´
ways to choose

half the bits where u and f are different. And there are 2n−d

ways to choose the bits where they are the same. Thus the
probability that a sample x will not eliminate f ∈ Kd where
2 ≤ d ≤ n and d is even (d is assumed to be even from now
on) is given as follows

Pe(d) =

`
d
d
2

´
.2n−d

2n
=

`
d
d
2

´

2d

Next, we shall prove the Lemma below to simplify the com-
position of the fitness functions remaining after cn

lg n
samples

are made.

Lemma 1. For a constant c, after
cn

lg n
samples the ex-

pected number of functions remaining in K2 is higher than

any Kd, 2 < d ≤ n

Proof. The expected number of samples in Kd after cn

ln n

samples is
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 `
d

d/2

´

2d

! cn
ln n
 

n
d

!

We have to prove, that for all 2 < d ≤ n,

 `
2

2/2

´

22

! cn
ln n
 

n
2

!
>

 `
d

d/2

´

2d

! cn
ln n
 

n
d

!

1
2

„
1
2

« cn
ln n

>

 `
d

d/2

´

2d

! cn
ln n

(n− 2)...(n− d + 1)
d!

Let us consider the base of the first term on the R.H.S.
Applying Sterling’s approximation for factorials, we get

`
d

d/2

´

2d
=

d!
d

2
! d

2
!2d

≈ ed ln d−d+
ln d
2 +

ln 2π
2

ed ln
d
2−d+ln

d
2 +ln 2π+d ln 2

= e
ln d−2 ln d

2−ln 2π

2

= e
ln 4d

d22π
2

=

r
2
πd

Using this result, we need to prove that

1
2

 s
1

4

2

πd

! cn
ln n

=

„
πd
8

« cn
2 ln n

>
(n− 2) . . . (n− d + 1)

d!

As R.H.S is smaller than
`

n

d

´d
, ignoring constant term,

„
πd
8

« cn
2 ln n

>
“n

d

”d

For d = 4, we find

πd
8

> 1.5 > 1

Hence, for large enough n and an adequate c, the L.H.S
will become greater than the R.H.S. This holds true when d
is thought of as an integer for any d where 2 < d ≤ n as the
L.H.S is exponential while the R.H.S is polynomial.

When d is thought of as a function of n, the R.H.S grows
slower than 2n for any value of d where 2 < d ≤ n. Consider

the function
“

n

q

” 1
2 ln n

. For q = 1, it is a constant value
√

e >

1. For q > 1, the function approaches
√

e asymptotically.
Here, q > 8

π
. Picking an arbitrary value 1 < b <

√
e, we

must prove for sufficiently large n,

 „
n
q

« 1
2 ln n

!cn

> bcn > 2n

This is true for c > ln 2

ln b
. Thus the inequlity holds for any

d where 2 < d ≤ n. This proves the lemma.

Theorem 1. For the domain of generalized OneMax of

size n, the expected number of samples of the target function

u required by OEFF to eliminate all incompatible functions

is O (n/ lg n).

Proof. We will determine that asymptotically almost
surely there are no functions left in K2 after cn

lg n
samples.

First, note that the probability of a random sample elimi-

nating a function in K2 is
(21)
22 = 1

2
, and the probability that

it will not be eliminated is also 1

2
. The probability that it

will be eliminated after cn

lg n
samples is 1−

`
1

2

´ cn
lg n .

There are
`

n

2

´
functions in K2 before elimination. The

probability that all these functions will be eliminated after
cn

lg n
is as follows:

„
1− 1

2
cn
lg n

«n(n−1)
2

From Lemma 1, we know that no Kd is less likely to be
empty than K2, and we examine the pessimistic process
where all levels are as difficult as K2. Thus the probabil-
ity of there being no functions other than the solution is at
least:

PE =

0

@
„

1− 1

2
cn
lg n

«n(n−1)
2

1

A

n
2

=

„
1− 1

2
cn
lg n

«n2(n−1)
4

Given that n4 < 2
cn
lg n and n3 > n

2
(n−1)

4
for sufficiently

large n, we know:

PE >

„
1− 1

n4

«n
3

=

 „
1− 1

n4

«n
4! 1

n

=

 „
1− 1

n4

«n
4−1„

1− 1
n4

«! 1
n

≥
„

1
e

„
1− 1

n4

«« 1
n

Since this asymptotically approaches 1, so does PE .

2.5 Example elimination process

We examine a simple optimal elimination process using
random sampling.

Consider the fitness function set F = {f0, ..., f9} over a
domain X = {y0, ..., y4}. Let the fitness value table be as
given in Table 1. Given u as the unknown target function,
we consider the following example.

Suppose the first random sample is y3 and u(y3) = 2.
From the table, we see that only f4 and f8 satisfy this crite-
rion, so {f0, f1, f2, f3, f5, f6, f7, f9} are eliminated (8 func-
tions) and {f4, f8} remain (2 functions). Suppose the next
sample is y4 and u(y4) = 3, which does not allow us to
eliminate an additional function. Our third sample is y1,
u(y1) = 3. As only f8 gives y0 a fitness value of 8, we con-
clude that u is f8 whose solution we know to be y0.
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Note how the solution is not something we sampled during
the search process. We will revisit this example later to
examine effects of ordering of samples.

2.6 Applying OEFF to Generalized OneMax

To illustrate OEFF in action, as well as to get a better
understanding of the actual number of samples required, we
implemented OEFF and applied it to OneMax

(x̂) over dif-
ferent problem sizes. For simplicity and clear comparison
with the theoretical results, we maintain our idealism in the
OEFF implementation: there is an indicator array for the
complete function set to represent R. Additionally, the al-
gorithm is permitted to consider the pre-evaluated values
for each sample without cost. We count only evaluations of
the target function. The implementation of the simplified
algorithm is shown in Algorithm 1. As stated, we discuss
more practical ideas for implementation later.

Algorithm 1 OEFF(v,n) on OneMax
(x̂)

N ← 2n

c ← 0
boolean R[N ] ← [true, . . . , true]
RSize ← N
target ← 0
while not found do

x ← choose uniformly from {0, 1}n

y ← OneMax
(x̂) ; c ← c + 1

RSize ← 0
for j = 0 to N − 1 do

R[j] = R[j] ∧ (V (j)

x = y)
if R[j] then

RSize ← RSize +1
target ← j

end if
end for

end while
Return c, target

Our experiment consisted of 20 different problem sizes
(n ∈ [1, 21]). For each size, we ran the program for 1000
times. In each run, a random target function was selected
from F by simply drawing x̂ from {0, 1}n uniformly at ran-
dom. Thus instances from problem classes with small n
were over-sampled, and the sampling became increasingly
sparse with the size of the problem. Each run we counted
the number of times the unknown target function was eval-
uated before it is uniquely identified from F , and this count
was averaged across the 1000 trials for that problem size.
The results are graphed in Figure 2.

In addition to the empirical values, we fitted the curve
g(n) = n/ lg n + 2 lg n − 2.25 to the sample data. The em-
pirical values suggest a close adherence to the theoretical
bound of O (n/ lg n), though a direct comparison with the
bound established in [4] is not entirely fair given our opti-
mistic assumptions.

Notice, there are other ways we might have used domain
knowledge to help us partition the function set. For ex-
ample, we might have used a much smaller, dispersed set
of exemplar functions and used the transitive nature of the
hamming distance measure to eliminate whole equivalence
classes with a sample without the need to evaluate every
function.

Figure 2: The points represent mean number of eval-
uations before the target function is identified for
problem classes of varying sizes. A fitted curve is
shown for comparison with the theoretical model.

3. OEFF AND EXISTING ANALYSIS

While the elimination of fitness functions view is different
from traditional approaches, it is nevertheless complemen-
tary. Here we show how our knowledge of existing analysis of
black-box optimization can be see through the lens of fitness
function elimination.

3.1 OEFF and No Free Lunch

To show that OEFF is consistent with NFL, we discuss
the condition in which its performance is identical to random
search. Let us apply OEFF on a F closed under permuta-
tion. Let VF be the list of unordered fitness values (with
repetition) that are present in any fitness function in F . u
is an unknown fitness function from F . Let v̂ be the largest
value in VF , which is also the value of the global optima for
all functions in F . For convenience, here we also write our
Xk tuple as an unordered set, Xk := {x1, . . . xk}.

We will consider the case where the samples taken so far
do not have the fitness value v̂. Let v̂ be repeated c times in
VF . That leaves those fitness functions containing c number
of v̂’s mapped to X − {x1, . . . , xk} search points. As F is
closed under permutation, these maps are also closed under
permutation. Thus R(k)

OPT
consists of fitness functions that

can map any search point in X−{x1, . . . , xk} to v̂. Moreover,
due to being closed under permutation, the number of fitness
functions that map any one of those search points to v̂ in
the same as any other one.

∀(xa, xb) ∈ (X − {x1, . . . , xk})
|{f |f ∈ F , f(xa) = v̂}| = |{f |f ∈ F , f(xb) = v̂}|

This means that irrespective of the contents �x1, . . . , xk�, all
search points in X −{x1, . . . , xk} are equally likely to be so-
lutions to u. The points have to be sampled until there are
only c points left. Therefore, finding their fitness is unneces-
sary. As this analysis is for the optimal algorithm, it is clear
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that it is impossible for any algorithm to solve the problem
with less than |X |−c samples within this case. It is also clear
that no algorithm including random search needs to sample
more than |X | − c search points. Thus the performance in
this case is identical to random search.

An algorithm will finish sooner if it samples the solution
point (i.e., one with fitness v̂); however, as mentioned be-
fore, for all k, all unsampled phenoypes are equally likely
to be the solution. Inductively, we see that all permuta-
tions of search points are equally likely to result in sampling
the solution. This again results in performance identical to
random search.

This is, of course, the very point of the proof offered in [8]
for No Free Lunch. Additionally, it’s clear that our notion
of function class is no different than that discussed in [6],
and that their result that the number of F that are closed
under permutation is negligible in the space of all classes is
the same here, as well.

3.2 Function elimination in (1+1) EA on
Generalized OneMax

To support our earlier argument that evolutionary algo-
rithms tend to perform approximate implicit elimination of
fitness functions, we consider (1+1) EA in the context of
fitness function elimination.

The (1+1) EA (with uniform mutation operator), due to
its random nature, does not exclude fitness functions or cor-
responding solutions strictly. However, based on the sample
search point in the current population, there exists an im-
plicit probability distribution that reflects the algorithm’s
estimate of the solution. Every change in the population,
which occurs only after sampling a higher fitness value, re-
sults in a different and possibly better estimate of the solu-
tion.

Despite the stochasticity, in the case of a (1+1) EA work-
ing on a generalized OneMax problem, it is possible to iden-
tify a set of solutions/fitness functions R(1+1) EA such that
the solution to u lies within this set. Again, we consider v̂
the fitness value of the solution.

In the case of the (1+1) EA, implicit partitioning comes
from two sources. First, as we’ve already discussed, any
algorithm that is capable of recognizing and returning the
solution implicitly eliminates the functions that do not corre-
spond with the target’s notion of what is or is not a solution:

Ss(xi, u)

=


{f |f ∈ F , f(xi) = v̂} if u(xi) = v̂
{f |f ∈ F , f(xi) �= v̂} otherwise

However, the (1+1) EA also compares values, and the
correspondence between the comparison result of the target
function and other functions in F can also be seen as a kind
of implicit partitioning:

Sc(xi, xj , c)

=


{f |f ∈ F , f(xi) < f(xj)} if u(xi) < u(xj)
F otherwise

With these two pieces in place, we write the elimination
function for the (1+1) EA as follows.

R(1+1) EA (Xk, u)

=

 
k−1\

i=1

Sc (xi, xi+1, u))

!
\
 

k\

i=1

Ss(xi, u)

!

Ss consists of the set of fitness functions that have xi as a
solution if it recieves fitness value of a solution. It consists
of everything else otherwise. Sc consists of all the fitness
functions that satisfy the increase in fitness value (1+1) EA
dictates. Intersected with the working set at every step, Ss

eliminates function at a slow rate (only those function with
xi as the solution) as long as xi is not a solution. But if it
is, then Ss eliminates enough functions to allow termination
of the search. Sc on the other hand eliminates functions
much quicker as many more functions are likely to violate
the inequality condition as a result of any sample.

From this several things are stand out. First, the elimi-
nation process here is clearly and unsurprisingly consistent.
The EA will remain in R(1+1) EA because the evolutionary
algorithm never chooses a sample with a lower fitness value.
The next population (if it changes) will have a higher fitness
value, so only those fitness functions that do not satisfy that
criterion do not survive. Second the main source of implicit
partitioning here is the comparison from selection which is
based on domain knowledge. While this is obvious, it un-
derscores one of our themes: Domain knowledge is being
applied here. Specifically, the algorithm designer has as-
sumed that the best way to sort through the possibilities in
F is by examining the fitness relationship between the sam-
ples one has seen. This domain knowledge provides more
partitioning opportunities in the OneMax

(x̂) class than our
“generic” process described earlier in the paper, for exam-
ple — though it’s obviously not making full use of what is
known by the structure of this space.

In spite of this observation, it’s clear our description is
overly pessimistic for a number of reasons. The EA doesn’t

sample randomly, but directs its sampling via the interac-
tion between selection and mutation. To bound the number
of target function evaluations of the (1+1) EA for a given
problem class using our framework would require some ex-
tension to deal with the stochastic effects of the mutation
operator. This is unnecessary here, because the (1+1) EA
converges on a solution with significantly less number of
samples than this elimination equation along with a random
sampling scheme suggests. This is the result of the (1+1)
EA operator’s ability to increase the likelyhood of getting a
sample with a higher fitness value compared to the random
sampling scheme.

4. DIRECTING SAMPLES IN EFF

Until this point, we’ve considered processes in which the
samples are drawn uniformly at random, independent of the
search process itself. As just stated, most search heuristics
use the search process to guide how samples are taken in
the future. Here we take a brief look at what OEFF tells us
about two such mechanisms.

4.1 Exact function elimination in BiRLS

One observation about generalized OneMax for applica-
tion by a traditional (1+1) EA is that a simple line search
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should do much better. That is, if we known every bit po-
sition is independent, we needn’t waste mutation effort on
positions we’ve already fixed. Indeed, there is a quite obvi-
ous and natural way to incorporate some domain knowledge
about this problem class into an EA by modifying the mu-
tation operator as follows.

Instead of flipping uniformly, our operator will flip bits one
at a time. In addition, it will not flip the same bit again.
It is clear that with this operator, (1+1) EA achieves O(n)
for OneMax

(x̂). Without loss of generality, we initialize
our starting individual at {0}n. We call this algorithm Bit-

Independent Random Local Search (BiRLS).
We will use bi ∈ X = {0, 1}n to be a binary string with

all bits set to 0 except the bit in position i, which is set to
1. Given v̂ = max{f} for some f ∈ F , we are interested in
when (v̂ AND bi) �= 0n. For expediency and clarity, we use
the short-hand notation [f ⊗ bi] for this. Essentially, it is an
expression that evaluates to a logical true if the ith bit of
the solution of f is a 1.

To model our specialized mutation, we define mask se-
quence as follows Mk := �b1, b2, . . . bk�, though clearly the or-
der does not matter. We define Xk in the following way. The
initial sample is initialized to the all zero string, x1 := 0n.
Afterward, xi := xi−1 XOR bi−1.

We define two separator functions:

S1(bj , xi, xj , u) = {f |f ∈ F , [f ⊗ bj ] ∧ (u(xi) > u(xj))}
S2(bj , xi, xj , u) = {f |f ∈ F , ¬[f ⊗ bj ] ∧ (u(xi) < u(xj))}

These two functions describe the following partitioning. Given
two samples, include all the functions from F where their
solution contains the ith bit if that target function evaluates
u(bi) > u(bj) in S1, and include all functions from F where
their solution does not contain ith bit if that target function
evaluates u(bi) < u(bj) in S2. That is, if flipping the bit
improved fitness, then keep all functions that have it, if it
did not improve it then keep all functions that did not.

With this, BiRLS can be written as an elimination func-
tion as follows.

RBiRLS(Xk, u)

= R(k)

BiRLS

= R(k−1)

BiRLS
∩ Ss(xk, u) ∩

(S1(bk−1, xk, xk−1, u) ∪ S2(bk−1, xk, xk−1, u))

Here the elimination method is elicited taking into con-
sideration directed sampling. So, in contrast to OEFF, the
process depends extensively on the composition of the so-
lutions. OEFF, due to its ability to look up known fitness
values, can rely on fitness values alone. Neither the (1+1)
EA nor our BiRLS have that luxury, and instead must rely
on the composition to perform elimination.

If OEFF were presented with the sample sequence gener-
ated by BiRLS, it could not do better on generalized OneMax

than O(n) because opportunities to exclude functions whose
solutions have bits not yet tested will not have presented
themselves. So in this sense, given the sample sequence,
BiRLS is optimal in its implicit function elimination pro-
cess.

The reason for the difference between the linear bound
and the one proved in Theorem 1, then, is only the way in
which the samples are chosen. As it turns out (and perhaps
counterintuitively) a bit-by-bit comparison in this case is

y0 y1 y2 y3 y4

f0 1 1 1 1 1
f1 2 1 2 1 2
f2 3 1 3 1 4
f3 1 2 1 1 1
f4 2 2 1 2 3
f5 3 3 1 1 1
f6 1 2 1 3 1
f7 2 3 1 1 2
f8 4 3 2 2 3
f9 4 3 3 3 4

Table 1: A fitness function set of size 10 over a search
space with five points. The information theoretically
optimal choice of sample is not optimal.

wasteful since a great deal more than one hamming level
can be removed at one time, and scanning each position in
the string in some sense minimizes what can be done by
any algorithm on this problem class. More generally, there’s
still more information here that was not exploited—namely
the transitive relationship of the hamming distance measure
that exists in both the search space and the function set
space.

4.2 Greedy sample selection is not Optimal

In the above example, we noted that the method of se-
lecting sample points can impact the efficiency that can be
achieved in terms of function elimination. Though it is not
our main focus, we would like to extend this discussion some-
what to help connect with a more traditional black-box view,
where directing sample selection is a chief concern. Here
we consider applying a simple greedy heuristic to select the
sample point in our elimination of functions point of view.

Our heuristic tries to maximize the expected information
gain on choosing an unsampled member of X . We measure
this using an estimate of the informational entropy [9] of the
partition introduced by the sampling. We revise our earlier
notation VF to mean the set of all distinct fitness values
returned by functions in F . Let H(x) be the entropy of the
partition on sampling x ∈ X .

H(xk+1) =
X

v∈VF

s ln s, where
|{f |f ∈ R(k)

OPT
∧ f(x) = v}|

|R(k)

OPT
|

Maximizing entropy, we choose xk+1 as follows.

xk+1 = argmax
x∈X

H(x)

As it turns out, maximizing the information gain of the
next sample, even with complete knowledge of the F × X
value space, does not guarantee that the number of expected
samples of the unknown target function is minimal. We
demonstrate this by counter example.

Let us revisit the example in Section 2.5 by apply this
heuristic to Table 1. To recap, we use yi ∈ X to refer to
the specific points in the search space, and we use xi ∈ X
to refer to the points in our sample sequence (the subscripts
of y index the search space, the subscripts of x index the
sequence).
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The sizes of various resulting sets generated by sampling
X and their entropies are:

Partition sizes on y0 : [3, 3, 2, 2] H(y0) = 1.366

Partition sizes on y1 : [3, 3, 4] H(y1) = 1.089

Partition sizes on y2 : [6, 2, 2] H(y2) = 0.950

Partition sizes on y3 : [6, 2, 2] H(y3) = 0.950

Partition sizes on y4 : [4, 2, 2, 2] H(y4) = 1.332

These equations clearly recommend y0 as the optimal choice
as the first sample. We need at least another sample in any
case before we can terminate. Now, let f(x1) = f(y0) = 1.

R(1)

OPT
= {f0, f3, f6}. Now, we see that no choice of a second

sample will partition R(1)

OPT
into sets of size 1. Hence, a third

sample will be necessary.
Instead let x1 be y1. The expected information gain is sig-

nificantly less than the previous case. If we get f(x1) = v,
then by choosing x2 = y1+v (the example problem class is
designed such that this method of selecting the next sample
point is correct), we can always reduce the size of R(2) to
1. Thus no more than 2 samples will be necessary. This
is clearly less than the number of samples required if the
heuristic is followed. Hence, the information gain is an in-
sufficient method to guarantee the best possible sample se-
quence for OEFF, though it may still be useful in practice.

5. DISCUSSION

This paper has focused on a novel algorithmic framework
for performing black-box optimization, and in so doing has
taken several views. Here we offer two discussions on the
two most important: 1. Using OEFF as a analytical tool
for studying the efficiency of existing methods, and 2. Using
OEFF (or ideas from OEFF) directly for actual optimization
purposes. We offer some discussion points on both of these
views below.

5.1 OEFF as an analytical tool

Primarily, we feel OEFF is best seen as a tool for studying
problems rather than solving them. Being optimal, it can
give insight into the performance bounds of classes of prob-
lems. The main idea is to establish a yardstick to see how
efficiently optimization methods use the domain knowledge
available (in principle, at least).

For instance, it is clear that with sufficient domain knowl-
edge OEFF can achieve the theoretical bound on generalized
OneMax. While it may be unfair to claim O(n/ log n) in
the general black-box scenario, it can at least be confirmed
that when one has perfect domain knowledge of the problem
class, the bound is tight.

In addition to analysis, OEFF may provide insight into
how similar performances can be achieved in practice. The
impracticality of OEFF can also be seen as an advantage
since we can use it to underscore the limitations of real sys-
tems. For example, we believe OEFF can help explain why
performance differences between OEFF and various prac-
tical algorithms are inevitable (i.e., the algorithms make
strictly less use of existing domain knowledge).

The technique of OEFF is not specifically designed for any
particular problem. However, it is able to achieve optimal
performance for any F . The key to this is the fact that
though OEFF is generic, it uses very specific and complete

information about F . This information is provided in the
table of fitness values that is efficiently accessible to OEFF.
Practical search algorithms, lacking this information, must
exploit fitness values, as well as the relationships between
composition of search points to devise a heuristic to solve u.

The OEFF achieves optimal performance in OneMax
(x̂)

by sampling the unknown fitness function at random points.
Without attempting broad generalizations, we feel this sug-
gests that the sampling method may not have as much in-
fluence on the search performance as more traditional black-
box optimization views imply. That is not to say that per-
formance improvements cannot be achieived with a different
sample sequence. However design engineers will clearly need
to look farther than a näıve greedy heuristic for choosing
samples.

From the way OEFF works, it is clear that this technique
depends on variation and reliability of the fitness values. For
example, if all fitness functions in F produced unique fitness
values for a single known phenotype, and if they were exactly
repeatable, then any search involves exactly one evaluation.

Notably, this technique does not depend on the connectiv-
ity of the search space effected through a combination of the
genotype, operators and any genotype-phenotype map. The
fitness landscape as induced by such topologies is neither
relevant nor required. It relies only on the table of fitness
values. This simplifies analysis by focusing our attention on
the problem class rather than the details of a particular al-
gorithm. An interesting corollary to this is that OEFF is
not affected by local optima because it climbs no hills.

As for disadvantages, the important one is that fitness
values of functions in F have to be available, making it im-
practical (as is) for many realistic problems.

But even this disadvantage provides useful information.
Consider the general case of any F and OEFF, as well as our
idealized domain knowledge about F in the pre-evaluated ta-
ble. If we remove even one value from this table, say (xi, fj),
then OEFF only loses partitioning opportunities in the case
where xi is drawn as a sample. Since OEFF makes maximal
use of available information, it stands to reason that for any
technique to be optimal in search performance in general, it
has to use all the pertaining information, implicitly or ex-
plicitly. This informal argument is like a dual for the NFL.
In other words, absence of any information results in no
performance increase and maximum performance increase
is only possible with perfect information. Again, there is no
requirement that the information must be made available in
the same form i.e., as a table.

Furthermore, we remind the reader that our view is pred-
icated on the notion that, if we correctly identify the target
function, we know the optimum. While this is trivial for gen-
eralized OneMax, it may be much more difficult for other
problems. Nevertheless, note that for OEFF, finding the so-
lution to the fitness functions given complete fitness values
is trivial.

An important requirement for the OEFF described above
is that the fitness functions in F cannot be stochastic to
any degree. Stochastic fitness functions lead to non repeat-
able fitness values and consequently incorrect elimination.
One solution is to make the elimination as conservative as
necessary. This can be achieved by using two different yet
complimentary measures. The first is to avoid eliminating
fitness functions that have fitness values within an accept-
able range of the fitness value given by u. Another is to
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require more than one difference in the fitness values be-
fore they are eliminated. Both measures reflect a conserva-
tive approach to elimination. The disadvantage is that this
would result in significant slowdown in the search process.
This is expected as the OEFF depends on the reliability of
the fitness functions for performing optimal elimination.

Further restrictions are placed on F that it must be fi-
nite. The reason this is not an issue in population based
techniques is because an approximate model of F lies in the
imagination of the algorithm designer. This way, reasoning
about the structure and shape of the landscape effected by
an operator on the functions in F can be done even if F is
infinite. This is not currently possible for OEFF.

5.2 Using EFF for practical problems

While not the primary goal, we shall discuss ways in which
we might be able to adapt EFF for practical use. There are
two approaches to do so. The first is a generic one that in-
volves approximating the functioning of OEFF at the cost of
optimality. The other is the possiblity of a problem specific
implementation of OEFF that might retain optimality.

An important hurdle in using OEFF directly is the fact
that computing the fitness function table is practically im-
possible. A simple approximation is to use a subset of F as
R(0). We can follow this up with conservative elimination.
However, this step is likely costs us accuracy of solution and
even optimality of performance. The accuracy of solution
increases with size of R(0). Moreover, we might consider dy-
namically changing the contents of R(0), retroactively apply-
ing elimination given existing samples; however, the worst
case problem classes will result eventually in considering all
of F . Thus there exists a tradeoff between memory required,
CPU required, and accuracy of solution.

Nevertheless, this might still be a practical option. The
effect of this approximation is similar to that of evolution-
ary operators that search through large spaces by sampling
it somewhat evenly. The solution will not be exact, but
it would be available in a practical amount of time. Still,
such approximation methods may complicate our assump-
tion about inferring the solution from the target function.

The best problems for application of this approximation
are those with a substantial performance difference between
an unknown fitness function and a known fitness function.
To explain how this might occur, consider the case of gener-
alized OneMax. Both the known and the unknown fitness
functions use the same mechanism for generating the fitness
value viz. hamming distance to an internal bit string. The
algorithm is not aware of u’s string but u is. Hence, both u
and f ∈ F take the same time to compute fitness values.

But the requirement for exactly similar fitness does not
imply identical mechanisms for generating that fitness. Con-
sider an unknown u that does not have an internal bitstring.
Instead, using some very time-consuming computations, it
generates fitness values identical to generalized OneMax.
This mechanism, not being hamming distance, is different
from the method used to generate fitness values for the
known set. In this case, for solving u, which involves iden-
tifying its implicit internal bitstring, it might be favorable
to use EFF and minimize the number of samples of u nec-
essary to do so. Here, the cost (one-time if using a table) of
evaluating many known fitness functions may be more than
compensated by avoiding a few evaluations of the unknown
fitness function. To generalize, what we need is a set of fit-

ness functions that can generate the fitness values similar
to those of the unknown, but much faster. The concept not
very dissimilar to that of a model and can be viewed as a
procedural codification of an engineer’s domain knowledge.

As mentioned earlier in the section, it is possible to store
the contents of the fitness table implicitly. Implicit storage
could allow the resulting program to eliminate potentially
similar to OEFF but under real world conditions. Designing
this algorithm, involves coming up with a way to implicitly
maintain the set of possible fitness functions and effect an
elimination process similar to OEFF without access to the
fitness value tables. The mechanism used by the modified
(1+1) EA to get O(n) is demonstrative of how this can be
achieved.

6. FUTURE WORK

Generalized OneMax may be considered a uninteresting
benchmark by many. This is partly due to the fact that the
behaviour of various evolutionary algorithms on it has been
analyzed rigorously in the past. We chose it as our testing
problem because it helps provide context with such previous
work. It is also simple and easy to understand, and there is a
known theoretical lower bound for its black-box complexity.

Next, we plan to study the behavior of OEFF on a wider
variety of problems with characteristics such as dependen-
cies between bits in the solution, deceptive fitness functions,
etc. We can also study the relation between solution accu-
racy, solving speed and degree of fitness value stochasticity
in stochastic fitness functions. More importantly, we are
interested in exploring ways to approximate the OEFF for
more practical implementations of this method.

Our chief interest, though, is in exploring how to effi-
ciently leverage knowledge about a domain space in order to
construct custom elimination methods equivalent to OEFF
without using an explicit table of values. In particular, using
known structural properties of a problem class may permit
an EFF to implicitly eliminate entire subsets of functions,
without directly evaluating all of them.
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